DOI QR코드

DOI QR Code

Parametric studies on smoothed particle hydrodynamic simulations for accurate estimation of open surface flow force

  • Lee, Sangmin (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Hong, Jung-Wuk (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2019.03.08
  • Accepted : 2019.07.23
  • Published : 2020.12.31

Abstract

The optimal parameters for the fluid-structure interaction analysis using the Smoothed Particle Hydrodynamics (SPH) for fluids and finite elements for structures, respectively, are explored, and the effectiveness of the simulations with those parameters is validated by solving several open surface fluid problems. For the optimization of the Equation of State (EOS) and the simulation parameters such as the time step, initial particle spacing, and smoothing length factor, a dam-break problem and deflection of an elastic plate is selected, and the least squares analysis is performed on the simulation results. With the optimal values of the pivotal parameters, the accuracy of the simulation is validated by calculating the exerted force on a moving solid column in the open surface fluid. Overall, the SPH-FEM coupled simulation is very effective to calculate the fluid-structure interaction. However, the relevant parameters should be carefully selected to obtain accurate results.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. 2017R1A5A1014883), and was also a part of the project titled "Construction of Ocean Research Station and their Application Studies" funded by the Ministry of Oceans and Fisheries, Korea.

References

  1. Acrylic, Plaxiglas G., 2013. Sheet, Tech. Rep. Arkema group technical report.
  2. Arnason, H., 2005. Interactions between an Incident Bore and a Free-Standing Coastal Structure. Ph.D. thesis. University of Washington.
  3. Arroyo, M., Ortiz, M., 2006. Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int. J. Numer. Methods Eng. 65 (13), 2167-2202. https://doi.org/10.1002/nme.1534
  4. Attaway, S., Heinstein, M., Swegle, J., 1994. Coupling of smooth particle hydrodynamics with the finite element method. Nucl. Eng. Des. 150 (2), 199-205. https://doi.org/10.1016/0029-5493(94)90136-8
  5. Barreiro, A., Crespo, A.J.C., Dominguez, J.M., Gomez-Gesteira, M., 2013. Smoothed particle hydrodynamics for coastal engineering problems. Comput. Struct. 120, 96-106. https://doi.org/10.1016/j.compstruc.2013.02.010
  6. Bathe, K.J., 2006. Finite Element Procedures.
  7. Bea, R., Xu, T., Stear, J., Ramos, R., 1999. Wave forces on decks of offshore platforms. J. Waterw. Port, Coast. Ocean Eng. 125 (3), 136-144. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:3(136)
  8. Boyd, R., Royles, R., El-Deeb, K., 2000. Simulation and validation of undex phenomena relating to axisymmetric structures. In: 6th International LS-DYNA Users Conference Simulation, pp. 9-11.
  9. Chella, M.A., Torum, A., Myrhaug, D., 2012. An overview of wave impact forces on offshore wind turbine substructures. Energy Procedia 20, 217-226. https://doi.org/10.1016/j.egypro.2012.03.022
  10. Chun, I., Woo, C., Navaratnam, C.U., Shim, J., 2016. Design wave condition and structural analysis for jacket structures installed in wave breaking zone. In: The 26th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
  11. Clauss, G., Lehmann, E., Ostergaard, C., 1992. Offshore Structures - Conceptual Design and Hydromechanics, vol. 1. Springer.
  12. Crespo, A.J.C., Gomez-Gesteira, M., Dalrymple, R.A., 2007. Boundary conditions generated by dynamic particles in SPH methods. Comput. Mater. Continua(CMC) 5 (3), 173-184.
  13. Cruz, A.M., Krausmann, E., 2008. Damage to offshore oil and gas facilities following hurricanes katrina and rita: an overview. J. Loss Prev. Process. Ind. 21 (6), 620-626. https://doi.org/10.1016/j.jlp.2008.04.008
  14. Cummins, S.J., Silvester, T.B., Cleary, P.W., 2012. Threeedimensional wave impact on a rigid structure using smoothed particle hydrodynamics. Int. J. Numer. Methods Fluids 68 (12), 1471-1496. https://doi.org/10.1002/fld.2539
  15. Dalrymple, R.A., Knio, O., 2001. Sph modelling of water waves. In: Proceedings of 4th Conference on Coastal Dynamics, vol. 01. ASCE, pp. 779-787.
  16. Fourey, G., Hermange, C., Le Touze, D., Oger, G., 2017. An efficient fsi coupling strategy between smoothed particle hydrodynamics and finite element methods. Comput. Phys. Commun. 217, 66-81. https://doi.org/10.1016/j.cpc.2017.04.005
  17. Gigold, R.A., Monaghan, J.J., 1977. Smoothed particle hyrodynamics: theory and application to non spherical star. Mon. Not. R. Astron. Soc. 181 (3), 375-389. https://doi.org/10.1093/mnras/181.3.375
  18. Gomez-Gesteira, M., 2013. SPHERIC SPH Benchmark Test Cases: Test 1-force Exerted by a Schematic 3D Dam Break on a Square Cylinder.
  19. Gomez-Gesteira, M., Dalrymple, R.A., 2004. Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure. J. Waterw. Port, Coast. Ocean Eng. 130 (2), 63-69. https://doi.org/10.1061/(ASCE)0733-950X(2004)130:2(63)
  20. Gomez-Gesteira, M., Crespo, A.J.C., Rogers, B.D., Dalrymple, R.A., Dominguez, J.M., Barreiro, A., 2012. Sphysics e development of a free-surface fluid solver e part 2: efficiency and test cases. Comput. Geosci. 48, 300-307. https://doi.org/10.1016/j.cageo.2012.02.028
  21. Gotoh, H., Khayyer, A., 2018. On the state-of-the-art of particle methods for coastal and ocean engineering. Coast Eng. J. 60 (1), 79-103. https://doi.org/10.1080/21664250.2018.1436243
  22. Grimaldi, A., Benson, D., Marulo, F., Guida, M., 2011. Steel structure impacting onto water: coupled finite element-smoothed-particle-hydrodynamics numerical modeling. J. Aircr. 48 (4), 1299-1308. https://doi.org/10.2514/1.C031258
  23. Hallquist, J.O., 2006. LS-DYNA Theory Manual.
  24. Hallquist, J.O., 2007. Ls-dyna Keyword User's Manual. Livermore Software Technology Corporation.
  25. Hong, J.W., Bathe, K.J., 2005. Coupling and enrichment schemes for finite element and finite sphere discretizations. Comput. Struct. 83 (17-18), 1386-1395. https://doi.org/10.1016/j.compstruc.2004.12.002
  26. Johnson, G.R., Beissel, S.R., 1996. Normalized smoothing functions for sph impact computations. Int. J. Numer. Methods Eng. 39 (16), 2725-2741. https://doi.org/10.1002/(SICI)1097-0207(19960830)39:16<2725::AID-NME973>3.0.CO;2-9
  27. Kettle, A.J., 2015. Storm britta in 2006: offshore damage and large waves in the north sea. Natural Hazards & Earth System Sciences Discussions 3 (9).
  28. Khayyer, A., Gotoh, H., Falahaty, H., Shimizu, Y., 2018. An enhanced isphesph coupled method for simulation of incompressible fluideelastic structure interactions. Comput. Phys. Commun. 232, 139-164. https://doi.org/10.1016/j.cpc.2018.05.012
  29. Khayyer, A., Gotoh, H., Falahaty, H., Shimizu, Y., 2018. Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluidstructure interaction. J. Hydrodyn. 30 (1), 49-61. https://doi.org/10.1007/s42241-018-0005-x
  30. Khayyer, A., Tsuruta, N., Shimizu, Y., Gotoh, H., 2019. Multi-resolution mps for incompressible fluid-elastic structure interactions in ocean engineering. Appl. Ocean Res. 82, 397-414. https://doi.org/10.1016/j.apor.2018.10.020
  31. Koshizuka, S., Oka, Y., 1996. Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123 (3), 421-434. https://doi.org/10.13182/NSE96-A24205
  32. Lee, J., Liu, W., Hong, J.-W., 2016. Impact fracture analysis enhanced by contact of peridynamic and finite element formulations. Int. J. Impact Eng. 87, 108-119. https://doi.org/10.1016/j.ijimpeng.2015.06.012
  33. Li, Z., Leduc, J., Nunez-Ramirez, J., Combescure, A., Marongiu, J.-C., 2015. A nonintrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion. Comput. Mech. 55 (4), 697-718. https://doi.org/10.1007/s00466-015-1131-8
  34. Libersky, L.D., Petschek, A.G., Carney, T.C., Hipp, J.R., Allahdadi, F.A., 1993. High strain Lagrangian hydrodynamics: a three-dimensional sph code for dynamic material response. J. Comput. Phys. 109 (1), 67-75. https://doi.org/10.1006/jcph.1993.1199
  35. Liu, W., Hong, J.W., 2012. Discretized peridynamics for linear elastic solids. Comput. Mech. 50 (5), 579-590. https://doi.org/10.1007/s00466-012-0690-1
  36. Liu, W., Hong, J.W., 2012. Discretized peridynamics for brittle and ductile solids. Int. J. Numer. Methods Eng. 89 (8), 1028-1046. https://doi.org/10.1002/nme.3278
  37. Liu, W., Hong, J.W., 2012. A coupling approach of discretized peridynamics with finite element method. Comput. Methods Appl. Mech. Eng. 245, 163-175. https://doi.org/10.1016/j.cma.2012.07.006
  38. Liu, M.B., Liu, G.R., 2010. Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17 (1), 25-76. https://doi.org/10.1007/s11831-010-9040-7
  39. Lucy, L.B., 1977. A numerical approach to the testing of the fission hypothesis. Astron. J. 82 (12), 1013. https://doi.org/10.1086/112164
  40. Monaghan, J.J., 1994. Simulating free surface flows with sph. J. Comput. Phys. 110, 399-406. https://doi.org/10.1006/jcph.1994.1034
  41. Monaghan, J.J., Kos, A., 1999. Solitary waves on a cretan beach. J. Waterw. Port, Coast. Ocean Eng. 125 (3), 145-154. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:3(145)
  42. Morison, J.R., O'brien, M.P., Johnson, J.W., 1950. The force exerted by surface waves on piles. J. Pet. Technol. 2 (5), 149-154. https://doi.org/10.2118/950149-G
  43. Roque, C., Ferreira, A., Reddy, J., 2011. Analysis of timoshenko nanobeams with a nonlocal formulation and meshless method. Int. J. Eng. Sci. 49 (9), 976-984. https://doi.org/10.1016/j.ijengsci.2011.05.010
  44. Sarpkaya, T., 2010. Wave Forces on Offshore Structures. Cambridge university press.
  45. Silvester, T.B., Cleary, P.W., 2006. Wave-structure interaction using smoothed particle hydrodynamics. In: Fifth International Conference on CFD in the Process Industries, pp. 13-15.
  46. Sumer, B.M., Fredsoe, J., 2006. Hydrodynamics Around Cylindrical Structures (Revised Edition) 26.
  47. Vandiver, J.K., et al., 1977. Detection of structural failure on fixed platforms by measurement of dynamic response. J. Pet. Technol. 29 (3), 305-310. https://doi.org/10.2118/5679-PA
  48. Vuyst, T.D., Vignjevic, R., Campbell, J., 2005. Coupling between meshless and finite element methods. Int. J. Impact Eng. 31 (8), 1054-1064. https://doi.org/10.1016/j.ijimpeng.2004.04.017
  49. Wang, L., Khayyer, A., Gotoh, H., Jiang, Q., Zhang, C., 2019. Enhancement of pressure calculation in projection-based particle methods by incorporation of background mesh scheme. Appl. Ocean Res. 86, 320-339. https://doi.org/10.1016/j.apor.2019.01.017

Cited by

  1. A Semi-Infinite Numerical Wave Tank Using Discrete Particle Simulations vol.8, pp.3, 2020, https://doi.org/10.3390/jmse8030159
  2. Comparative study on the breaking waves by a piston-type wavemaker in experiments and SPH simulations vol.62, pp.2, 2020, https://doi.org/10.1080/21664250.2020.1747141
  3. SPH 기법 기반의 파동수조 시뮬레이션 vol.34, pp.1, 2021, https://doi.org/10.7734/coseik.2021.34.1.59
  4. Nondimensionalized semi-empirical equation to predict secondary load cycles on vertical cylinders of different diameters vol.230, 2021, https://doi.org/10.1016/j.oceaneng.2021.108968
  5. Coupling of SPH and Voronoi-cell lattice models for simulating fluid-structure interaction vol.8, pp.4, 2020, https://doi.org/10.1007/s40571-020-00371-0