DOI QR코드

DOI QR Code

Prediction of fully plastic J-integral for weld centerline surface crack considering strength mismatch based on 3D finite element analyses and artificial neural network

  • Duan, Chuanjie (College of Harbour, Coastal and Offshore Engineering, Hohai University) ;
  • Zhang, Shuhua (College of Harbour, Coastal and Offshore Engineering, Hohai University)
  • Received : 2019.05.20
  • Accepted : 2020.03.15
  • Published : 2020.12.31

Abstract

This work mainly focuses on determination of the fully plastic J-integral solutions for welded center cracked plates subjected to remote tension loading. Detailed three-dimensional elasticeplastic Finite Element Analyses (FEA) were implemented to compute the fully plastic J-integral along the crack front for a wide range of crack geometries, material properties and weld strength mismatch ratios for 900 cases. According to the database generated from FEA, Back-propagation Neural Network (BPNN) model was proposed to predict the values and distributions of fully plastic J-integral along crack front based on the variables used in FEA. The determination coefficient R2 is greater than 0.99, indicating the robustness and goodness of fit of the developed BPNN model. The network model can accurately and efficiently predict the elastic-plastic J-integral for weld centerline crack, which can be used to perform fracture analyses and safety assessment for welded center cracked plates with varying strength mismatch conditions under uniaxial loading.

Keywords

Acknowledgement

The authors gratefully acknowledge the helpful comments from anonymous reviewers on this study.

References

  1. Betegon, C., Penuelas, I., 2006. A constraint based parameter for quantifying the crack-tip stress fields in welded joints. Eng. Fract. Mech. 73, 1865-1877. https://doi.org/10.1016/j.engfracmech.2006.02.012
  2. Boothman, D.P., Lee, M.M.K., Luxmoore, A.R., 1999. The effects of weld mismatch on J-integrals and Q-values for semi-elliptical surface flaws. Eng. Fract. Mech. 64, 433-458. https://doi.org/10.1016/S0013-7944(99)00091-0
  3. Bucar, T., Nagode, M., Fajdiga, M., 2006. A neural network approach to describing the scatter of SeN curves. Int. J. Fatig. 28, 311-323. https://doi.org/10.1016/j.ijfatigue.2005.08.002
  4. Cao, M.S., Pan, L.X., et al., 2015. Neural network ensemble-based parameter sensitivity analysis in civil engineering systems. Neural Comput. Appl. 26, 1-8. https://doi.org/10.1007/s00521-014-1676-z
  5. Donato, G.H.B., Magnabosco, R., Ruggieri, C., 2009. Effects of weld strength mismatch on J and CTOD estimation procedure for SE(B) specimens. Int. J. Fract. 159, 1-20. https://doi.org/10.1007/s10704-009-9377-9
  6. Fr Lin, MJ Shaw, 1997. Active training of backpropagation neural networks using the learning by experimentation methodology. Ann. Oper. Res. 75, 105-122. https://doi.org/10.1023/A:1018999110972
  7. Genel, K., 2004. Application of artificial neural network for predicting strain-life fatigue properties of steel on the basis of tensile tests. Int. J. Fatig. 26, 1027-1035. https://doi.org/10.1016/j.ijfatigue.2004.03.009
  8. Gy Fu, W Yang, Li, C.Q., 2017. Elastic and fully plastic J-integrals for mixed mode fracture induced by inclined surface cracks in plates under biaxial loading. Eng. Fract. Mech. 186, 483-495. https://doi.org/10.1016/j.engfracmech.2017.10.032
  9. Gy Fu, W Yang, Li, C.Q., 2017. Stress intensity factors for mixed mode fracture induced by inclined cracks in pipes under axial tension and bending. Theor. Appl. Fract. Mech. 89, 100-109. https://doi.org/10.1016/j.tafmec.2017.02.001
  10. Hong, C., Chiang, L.P., Elangovan, S., 1999. Wavelet packet analysis and artificial intelligence based adaptive fault diagnosis. In: Power Engineering Conference and IEAust Energy Conference, Darwin, Australia, pp. 192-198.
  11. Huang, Y.F., Zhou, W.X., 2020. Impacts of residual stresses on J-integral for clamped SE(T) specimens with weld centerline cracks. Theor. Appl. Fract. Mech. https://doi.org/10.1016/j.tafmec.2020.102511 (in press).
  12. Ince, R., 2004. Prediction of fracture parameters of concrete by artificial neural networks. Eng. Fract. Mech. 71, 2143-2159. https://doi.org/10.1016/j.engfracmech.2003.12.004
  13. Kim, Y.J., Kim, J.S., Schwalbe, K.H., 2003. Numerical investigation on J-integral testing of heterogeneous fracture toughness testing specimensdpart I: weld metal cracks. Fatig. Fract. Eng. Mater. Struct. 26, 683-694. https://doi.org/10.1046/j.1460-2695.2003.00676.x
  14. Kirk, M.T., Rh Dodds, 1993. The influence of weld strength mismatch on crack-tip constrain in single edge notch bend specimens. Int. J. Fract. 18, 297-316. https://doi.org/10.1007/BF00013040
  15. Kobayashi, A.S., Chiu, S.T., Beeuwkes, R., 1973. A numerical and experimental investigation on the use of J-integral. Eng. Fract. Mech. 5, 293-305. https://doi.org/10.1016/0013-7944(73)90024-6
  16. Kumar, V., German, M.D., Shih, C.F., 1981. An Engineering Approach for ElasticPlastic Fracture Analysis. EPRI, Palo Alto. Report NP-1931.
  17. Kumar, V., Schumacher, B.I., German, M.D., 1991. Effect of thermal and residual stresses on the J-integral elastic-plastic fracture analysis. Comput. Struct. 40, 487-501. https://doi.org/10.1016/0045-7949(91)90374-U
  18. Kumar, S., Khan, I.A., Bhasin, V., Singh, R.K., 2014. Characterization of crack-tip stresses in plane-strain fracture specimens having weld center crack. Int. J. Solid Struct. 51, 1464-1474. https://doi.org/10.1016/j.ijsolstr.2013.12.039
  19. Lee, M.M.K., Boothman, D.P., Luxmoore, A.R., 1999. Effects of biaxial loading on crack driving force and constraints for shallow semi-elliptical surface flaws. Int. J. Fract. 98, 37-54.
  20. Lei, Y., 2004. J-integral and limit load analysis of semi-elliptical surface cracks in plates under tension. Int. J. Pres. Ves. Pip. 81, 21-30. https://doi.org/10.1016/j.ijpvp.2003.12.004
  21. Lei, Y., 2004. J-integral and limit load analysis of semi-elliptical surface cracks in plates under bending. Int. J. Pres. Ves. Pip. 81, 31-41. https://doi.org/10.1016/j.ijpvp.2003.12.003
  22. Lei, Y., 2004. J-integral and limit load analysis of semi-elliptical surface cracks in plates under combined tension and bending. Int. J. Pres. Ves. Pip. 81, 43-56. https://doi.org/10.1016/j.ijpvp.2003.12.002
  23. Lei, Y., Tao, J., Li, P.N., 1999. Limit load and J estimates of a center cracked plate with an asymmetric crack in a mismatched weld. Int. J. Pres. Ves. Pip. 76, 747-757. https://doi.org/10.1016/S0308-0161(99)00057-5
  24. Lei, Y., Ainsworth, R.A., 1997. A J integral estimation method for cracks in welds with mismatched mechanical properties. Int. J. Pres. Ves. Pip. 70 (3), 237-245. https://doi.org/10.1016/S0308-0161(96)00035-X
  25. Li, C.Q., Fu, G.Y., Yang, W., 2016. Stress intensity factors for inclined external surface cracks in pressurized pipes. Eng. Fract. Mech. 165, 72-86. https://doi.org/10.1016/j.engfracmech.2016.08.014
  26. Li, J.C., Zhao, D.L., et al., 2018. A link prediction method for heterogeneous networks based on BP neural network. Physica A 495, 1-17. https://doi.org/10.1016/j.physa.2017.12.018
  27. Ling, M., Luo, X., et al., 2017. Numerical modeling and artificial neural network for predicting J-integral of top-down cracking in asphalt pavement. Transport. Res. Rec. 2631, 83-95. https://doi.org/10.3141/2631-10
  28. McClung, R.C., Chell, G.G., Lee, Y.D., Russel, D.A., Ge, Orient, 1999. ''Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth". NASA/CR-1999-209428.
  29. Munoz-Abella, B., Rubio, L., Rubio, P., 2015. Stress intensity factor estimation for unbalanced rotating cracked shafts by artificial neural networks. Fatig. Fract. Eng. Mater. Struct. 38, 352-367. https://doi.org/10.1111/ffe.12237
  30. Newman, J.C., Raju, I.S., 1981. An empirical stress-intensity factor equation for the surface crack. Eng. Fract. Mech. 15, 185-192. https://doi.org/10.1016/0013-7944(81)90116-8
  31. Pujol, J.C.F., Pinto, J.M.A., 2011. A neural network approach to fatigue life prediction. Int. J. Fatig. 33 (3), 313-322. https://doi.org/10.1016/j.ijfatigue.2010.09.003
  32. Ramberg, W., Osgood, W.R., 1943. Description of StresseStrain Curves by Three Parameters. Technical Note No. 902. National Advisory Committee for Aeronautics, Washington DC.
  33. Rice, J.R., 1968. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379-386. https://doi.org/10.1115/1.3601206
  34. Rubio, L., Munoz-Abella, B., 2010. A neural approach to crack identification in shafts using wave propagation signals. In: Proc. Of the Tenth International Conference on Computational Structures Technology, Valencia, Spain.
  35. Rumelhart, D.E., Mcclelland, J.L., 1986. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol1-Vol2. MIT press, Cambridge.
  36. Savioli, R.G., Ruggieri, C., 2013. J and CTOD estimation formulas for C(T) fracture specimens including effects of weld strength overmatch. Int. J. Fract. 179, 109-127. https://doi.org/10.1007/s10704-012-9781-4
  37. Schwalbe, K.H., et al., 1997. Common views on the effects of yield strength mismatch on testing and structural assessment. In: Schwalbe, K.-H., Kocak, M., et al. (Eds.), Mis-matching of Interfaces and Welds. GKSS Research Centre Publications, Geestthacht, FRG, pp. 99-132.
  38. Seibi, A., Al-Alawi, S.M., 1997. Prediction of fracture toughness using artificial neural networks (ANNs). Eng. Fract. Mech. 3, 311-319. https://doi.org/10.1016/S0013-7944(96)00076-8
  39. Shih, C.F., Moran, B., Nakamura, T., 1986. Energy release rate along a threedimensional crack front in a thermally stressed body. Int. J. Fract. 30, 79-102. https://doi.org/10.1007/BF00034019
  40. Sih, G.C., Lee, Y.D., 1989. Review of triaxial crack border stress and energy behaviour. Theor. Appl. Fract. Mech. 12, 1-17. https://doi.org/10.1016/0167-8442(89)90011-6
  41. Song, Y., Yu, Z., 2013. Spring back prediction in t-section beam bending process using neural networks and finite element method. Arch. Civil. Mech. Eng. 13, 229-241. https://doi.org/10.1016/j.acme.2012.11.004
  42. Souza, R.F., Ruggieri, C., 2015. J-dominance and size requirements in strengthmismatched fracture specimens with weld centerline cracks. J. Braz. Soc. Mech. Sci. Eng. 37, 1083-1096. https://doi.org/10.1007/s40430-014-0249-5
  43. SINTAP, 1999. Structural Integrity Assessment Procedures for European Industry-Final Procedure. European Union Project. No.BE95-1426.
  44. Toribio, J., Matos, J.C., Gonzalez, B., 2016. Aspect ratio evolution associated with surface cracks in sheets subjected to fatigue. Int. J. Fatig. 92, 588-595. https://doi.org/10.1016/j.ijfatigue.2016.03.028
  45. ABAQUS. Version 6.14 Documentation, 2014. Dassault Systemes Simulia Corp., Providence, RI, USA.
  46. Wang, X., 2006. Fully plastic J-integral solutions for surface cracked plates under biaxial loading. Eng. Fract. Mech. 73, 1581-1595. https://doi.org/10.1016/j.engfracmech.2005.12.014
  47. Yagawa, G., Kitajima, Y., Ueda, H., 1993. Three-dimensional fully plastic solutions for semi-elliptical surface cracks. Int. J. Pres. Ves. Pip. 53, 457-510. https://doi.org/10.1016/0308-0161(93)90073-3
  48. Zhao, H.S., Lie, S.T., Zhang, Yao, 2018. Strain-based J-estimation scheme for fracture assessment of misaligned clad pipelines with an interface crack. Mar. Struct. 61, 238-255. https://doi.org/10.1016/j.marstruc.2018.06.006

Cited by

  1. Study on prediction method of crack propagation in absorber weld by experiment and simulation vol.7, 2020, https://doi.org/10.1016/j.egyr.2021.02.022