DOI QR코드

DOI QR Code

An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part I = generalisation

  • Kim, Do Kyun (Marine Offshore and Subsea Technology Group, Newcastle University) ;
  • Wong, Eileen Wee Chin (Ocean & Ship Technology (OST) Research Group, Universiti Teknologi PETRONAS) ;
  • Cho, Nak-Kyun (Department of Manufacturing Systems and Design Engineering, SeoulTech)
  • Received : 2020.03.17
  • Accepted : 2020.06.25
  • Published : 2020.12.31

Abstract

A reliable and cost-effective technique for the development of corrosion damage model is introduced to predict nonlinear time-dependent corrosion wastage of steel structures. A detailed explanation on how to propose a generalised mathematical formulation of the corrosion model is investigated in this paper (Part I), and verification and application of the developed method are covered in the following paper (Part II) by adopting corrosion data of a ship's ballast tank structure. In this study, probabilistic approaches including statistical analysis were applied to select the best fit probability density function (PDF) for the measured corrosion data. The sub-parameters of selected PDF, e.g., the largest extreme value distribution consisting of scale, and shape parameters, can be formulated as a function of time using curve fitting method. The proposed technique to formulate the refined time-dependent corrosion wastage model (TDCWM) will be useful for engineers as it provides an easy and accurate prediction of the 1) starting time of corrosion, 2) remaining life of the structure, and 3) nonlinear corrosion damage amount over time. In addition, the obtained outcome can be utilised for the development of simplified engineering software shown in Appendix B.

Keywords

Acknowledgement

This research was supported by the Technology Innovation Program (Grant No.: 10053121 and 10051279) funded by the Ministry of Trade, Industry & Energy (MI, Korea). The authors would also like to thank Newcastle University for their financial supports.

References

  1. Abdussamie, N., Ojeda, R., Daboos, M., 2018. ANFIS method for ultimate strength prediction of unstiffened plates with pitting corrosion. Ships Offshore Struct. 13 (5), 540-550. https://doi.org/10.1080/17445302.2018.1439668
  2. Akpa Jackson, G., 2013. Modeling of the corrosion rate of stainless steel in marine oil environment. ARPN J. Eng. Appl. Sci. 8 (8), 656-662.
  3. Bai, Y., Yan, H.B., Cao, Y., Kim, Y.H., Yang, Y.Y., Jiang, H., 2016. Time-dependent reliability assessment of offshore jacket platforms. Ships Offshore Struct. 11 (6), 591-602. https://doi.org/10.1080/17445302.2015.1038869
  4. Cheng, A., Chen, N.Z., 2017. Corrosion fatigue crack growth modelling for subsea pipeline steels. Ocean Eng. 142, 10-19. https://doi.org/10.1016/j.oceaneng.2017.06.057
  5. Chernov, B.B., 1990. Predicting the corrosion of steels in seawater from its physiochemical characteristics. Protect. Met. 26 (2), 238-241.
  6. Chernov, B.B., Ponomarenko, S.A., 1991. Physiochemical modelling of metal corrosion in seawater. Protect. Met. 27 (5), 612-615.
  7. Commercial, Specialised Diving LTD, 2018. Are Your Underwater Structures in a Good Condition? - UT Meter, Commercial Blog. Ferndown, UK. https://commercialandspecialiseddiving.wordpress.com/2018/02/28/are-yourunderwater-structures-in-a-good-condition-ut-meter/.
  8. Cui, J., Wang, D., Ma, N., 2019. Case studies on the probabilistic characteristics of ultimate strength of stiffened panels with uniform and non-uniform localized corrosion subjected to uniaxial and biaxial thrust. Int. J. Naval Archit. Ocean Eng. 11 (1), 97-118. https://doi.org/10.1016/j.ijnaoe.2018.02.011
  9. Energy Global News, 2020. 12 December 1999 - Tanker Erika Broken in Two in the Bay of Biscaye. Energy Global News. http://www.energyglobalnews.com/12-december-1999-tanker-erika-broke-in-two-in-the-bay-of-biscaye.
  10. Evans, U.R., 1960. The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications. Edward Arnold Publishers Ltd., London, UK.
  11. Georgiadis, D., Samuelides, M., 2019. A methodology for the reassessment of hullgirder ultimate strength of a VLCC tanker based on corrosion model updating. Ships Offshore Struct. 14 (Suppl. 1), 270-280. https://doi.org/10.1080/17445302.2019.1577599
  12. Gucuyen, E., Erdem, R.T., 2014. Corrosion effects on structural behaviour of jacket type offshore structures. Gradevinar 66 (11), 981-986.
  13. Guedes Soares, C., Garbatov, Y., Zayed, A., Wang, G., 2005. Non-linear corrosion model for immersed steel plates accounting for environmental factors. Transactions of the SNAME 111, 194-211.
  14. Ivanov, L.D., Chen, N.Z., 2017. On the presentation of ship's hull girder section modulus in probabilistic formats. Ships Offshore Struct. 12 (8), 1024-1036. https://doi.org/10.1080/17445302.2017.1303883
  15. Ivosevic, S., Mestrovic, R., Kovac, N., 2019. Probabilistic estimates of corrosion rate of fuel tank structures of aging bulk carriers. Int. J. Naval Archit. Ocean Eng. 11 (1), 165-177. https://doi.org/10.1016/j.ijnaoe.2018.03.003
  16. Joo, M., Doh, J.H., Lee, J.S., 2018. Determination of the best distribution and effective interval using statistical characterization of uncertain variables. J. Comput. Design Eng. 5 (3), 358-367. https://doi.org/10.1016/j.jcde.2017.11.007
  17. Kim, D.K., Kim, S.J., Kim, H.B., Zhang, X.M., Li, C.G., Paik, J.K., 2015. Ultimate strength performance of bulk carriers with various corrosion additions. Ships Offshore Struct. 10 (1), 59-78. https://doi.org/10.1080/17445302.2014.883957
  18. Kim, D.K., Kim, B.J., Seo, J.K., Kim, H.B., Zhang, X.M., Paik, J.K., 2014a. Time-dependent corrosion damage on the development of residual strength - grounding damage index diagram. Ocean Eng. 76, 163-171. https://doi.org/10.1016/j.oceaneng.2013.06.023
  19. Kim, D.K., Kim, H.B., Zhang, X.M., Li, C.G., Paik, J.K., 2014b. Ultimate strength performance of tankers associated with industry corrosion addition practices. Int. J. Naval Archit. Ocean Eng. 6 (3), 507-528. https://doi.org/10.2478/IJNAOE-2013-0196
  20. Kim, D.K., Park, D.K., Kim, H.B., Seo, J.K., Paik, J.K., Kim, B.J., Kim, M.S., 2012a. The necessity of applying the common corrosion addition rule to container ships in terms of ultimate longitudinal strength. Ocean Eng. 49, 43-55. https://doi.org/10.1016/j.oceaneng.2012.04.012
  21. Kim, D.K., Park, D.K., Kim, J.H., Kim, S.J., Kim, B.J., Seo, J.K., Paik, J.K., 2012b. Effect of corrosion on the ultimate strength of double hull oil tankers - Part I: stiffened panels. Struct. Eng. Mech. 42 (4), 507-530. https://doi.org/10.12989/sem.2012.42.4.507
  22. Kim, D.K., Park, D.K., Park, D.H., Kim, H.B., Kim, B.J., Seo, J.K., Paik, J.K., 2012c. Effect of corrosion on the ultimate strength of double hull oil tankers - Part II: hull girders. Struct. Eng. Mech. 42 (4), 531-549. https://doi.org/10.12989/sem.2012.42.4.531
  23. Kim, D.K., Zalaya, M.A., Choi, H.S., Mohd Hairil, M., Park, K.S., 2017. Safety assessment of corroded jacket platform considering decommissioning event. Int. J. Automot. Mech. Eng. 14 (3), 4462-4485. https://doi.org/10.15282/ijame.14.3.2017.6.0353
  24. Kim, D.K., Lim, H.L., Cho, N.K., 2020. An advanced technique to predict timedependent corrosion damage of onshore, offshore, nearshore and ship structures: Part II = application to the ship's ballast tank. Int. J. Naval Archit. Ocean Eng. https://doi.org/10.1016/j.ijnaoe.2020.07.002. In press.
  25. Kim, D.K., Lim, H.L., Yu, S.Y., 2019a. Ultimate strength prediction of T-bar stiffened panel under longitudinal compression by data processing: a refined empirical formulation. Ocean Eng. 192, 106522. https://doi.org/10.1016/j.oceaneng.2019.106522
  26. Kim, D.K., Wong, E.W.C., Lee, E.B., Yu, S.Y., Kim, Y.T., 2019b. A method for empirical formulation of current profile. Ships Offshore Struct. 14 (2), 176-192. https://doi.org/10.1080/17445302.2018.1488340
  27. Lam, C., 2015. Statistical Analyses of Historical Pipeline Incident Data with Application to the Risk Assessment of Onshore Natural Gas Transmission Pipelines. MSc Dissertation, The University of Western Ontario, London, Canada.
  28. Mohd Hairil, M., Kim, D.K., Kim, D.W., Paik, J.K., 2014a. A time-variant corrosion wastage model for subsea gas pipelines. Ships Offshore Struct. 9 (2), 161-176. https://doi.org/10.1080/17445302.2013.770724
  29. Mohd Hairil, M., Paik, J.K., 2013. Investigation of the corrosion progress characteristics of offshore subsea oil well tubes. Corrosion Sci. 67, 130-141. https://doi.org/10.1016/j.corsci.2012.10.008
  30. Mohd Hairil, M., Kim, D.W., Lee, B.J., Kim, D.K., Seo, J.K., Paik, J.K., 2014b. On the burst strength capacity of an aging subsea gas pipeline. J. Offshore Mech. Arctic Eng. 136 (4), 041402, 1-7.
  31. Melchers, R.E., 2003a. Mathematical modelling of the diffusion controlled phase in marine immersion corrosion of mild steel. Corrosion Sci. 45 (5), 923-940. https://doi.org/10.1016/S0010-938X(02)00208-1
  32. Melchers, R.E., 2003b. Modeling of marine immersion corrosion for mild and low alloy steels - Part 1: phenomenological model. Corrosion 59 (4), 319-334. https://doi.org/10.5006/1.3277564
  33. Melchers, R.E., 2003c. Probabilistic model for marine corrosion of steel for structural reliability assessment. J. Struct. Eng. 129 (11), 1484-1493. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:11(1484)
  34. Melchers, R.E., 2008. Development of new applied models for steel corrosion in marine applications including shipping. Ships Offshore Struct. 3 (2), 135-144. https://doi.org/10.1080/17445300701799851
  35. Meo, D.D., Oterkus, E., 2017. Finite element implementation of a peridynamic pitting corrosion damage model. Ocean Eng. 135, 76-83. https://doi.org/10.1016/j.oceaneng.2017.03.002
  36. Paik, J.K., Kim, D.K., 2012. Advanced method for the development of an empirical model to predict time-dependent corrosion wastage. Corrosion Sci. 63, 51-58. https://doi.org/10.1016/j.corsci.2012.05.015
  37. Paik, J.K., Kim, S.K., Lee, S.K., 1998. Probabilistic corrosion rate estimation model for longitudinal strength members of bulk carriers. Ocean Eng. 25 (10), 837-860. https://doi.org/10.1016/S0029-8018(97)10009-9
  38. Paik, J.K., Lee, J.M., Hwang, J.S., Park, Y.I., 2003a. A time-dependent corrosion wastage model for the structures of single- and double-hull tankers and FSOs and FPSOs. Mar. Technol. 40 (3), 201-217.
  39. Paik, J.K., Melchers, R.E., 2008. Condition Assessment of Aged Structures. CRC Press, New York, USA.
  40. Paik, J.K., Thayamballi, A.K., 2003. Ultimate Limit State Design of Steel-Plated Structures. John Wiley & Sons, Chichester, UK.
  41. Paik, J.K., Thayamballi, A.K., 2007. Ship-shaped Offshore Installations. Cambridge University Press, Cambridge, UK.
  42. Paik, J.K., Thayamballi, A.K., Park, Y.I., Hwang, J.S., 2003b. A time-dependent corrosion wastage model for bulk carrier structures. Int. J. Marit. Eng. 145 (A2), 61-87.
  43. Paik, J.K., Thayamballi, A.K., Park, Y.I., Hwang, J.S., 2004. A time-dependent corrosion wastage model for seawater ballast tank structures of ships. Corrosion Sci. 46 (2), 471-486. https://doi.org/10.1016/S0010-938X(03)00145-8
  44. Qin, S., Cui, W., 2003. Effect of corrosion models on the time-dependent reliability of steel plated structures. Mar. Struct. 16 (1), 15-34. https://doi.org/10.1016/S0951-8339(02)00028-X
  45. Rahbar-Ranji, A., Niamir, N., Zarookian, A., 2015. Ultimate strength of stiffened plates with pitting corrosion. Int. J. Naval Archit. Ocean Eng. 7 (3), 509-525. https://doi.org/10.1515/ijnaoe-2015-0037
  46. Rajput, A., Park, J.H., Noh, S.H., Paik, J.K., 2019. Fresh and sea water immersion corrosion testing on marine structural steel at low temperature. Ships Offshore Struct. in-press https://www.tandfonline.com/doi/full/10.1080/17445302.2019.1664128.
  47. Ringsberg, J.W., Li, Z., Johnson, E., Kuznecovs, A., Shafieisabet, R., 2018. Reduction in ultimate strength capacity of corroded ships involved in collision accidents. Ships Offshore Struct. 13 (Suppl. 1), 155-166. https://doi.org/10.1080/17445302.2018.1429158
  48. Tomashov, N.D., 1966. Theory of Corrosion and Protection of Metals: the Science of Corrosion. Macmillan, New York, USA.
  49. Wang, G., Lee, A.K., Ivanov, L., Lynch, T.J., Serratella, C., Basu, R., 2008. A statistical investigation of time-variant hull girder strength of aging ships and coating life. Mar. Struct. 21 (2-3), 240-256. https://doi.org/10.1016/j.marstruc.2007.10.002
  50. Wikipedia, 2018. Goodness of Fit. https://en.wikipedia.org/wiki/Goodness_of_fit.
  51. Wong, E.W.C., Kim, D.K., 2018. A simplified method to predict fatigue damage of TTR subjected to short-term VIV using artificial neural network. Adv. Eng. Software 126, 100-109. https://doi.org/10.1016/j.advengsoft.2018.09.011
  52. Wood, M.H., Vetere Arellano, A.L., Van Wijk, L., 2013. Corrosion-related Accidents in Petroleum Refineries: Lessons Learned from Accidents in EU and OECD Countries (Report No. EUR 26331 EN). European Commission Joint Research Centre, Institute for the Protection and Security of the Citizen, Ispra, Italy.
  53. Yang, H.Q., Zhang, Q., Tu, S.S., Wang, Y., Huang, Y., 2016. A study on time-variant corrosion model for immersed steel plate elements considering the effect of mechanical stress. Ocean Eng. 125, 134-146. https://doi.org/10.1016/j.oceaneng.2016.08.005
  54. Zhang, Y., Huang, Y., Zhang, Q., Liu, G., 2016. Ultimate strength of hull structural plate with pitting corrosion damnification under combined loading. Ocean Eng. 116, 273-285. https://doi.org/10.1016/j.oceaneng.2016.02.039

Cited by

  1. A Useful Manufacturing Guide for Rotary Piercing Seamless Pipe by ALE Method vol.8, pp.10, 2020, https://doi.org/10.3390/jmse8100756
  2. Finite Element Analysis of Composite Repair for Damaged Steel Pipeline vol.11, pp.3, 2020, https://doi.org/10.3390/coatings11030301
  3. Long-Term Marine Environment Exposure Effect on Butt-Welded Shipbuilding Steel vol.9, pp.5, 2020, https://doi.org/10.3390/jmse9050491
  4. The effect of corrosion spatial randomness and model selection on the ultimate strength of stiffened panels vol.16, pp.suppl1, 2021, https://doi.org/10.1080/17445302.2021.1907063
  5. A probabilistic approach to assess the computational uncertainty of ultimate strength of hull girders vol.213, 2021, https://doi.org/10.1016/j.ress.2021.107688