DOI QR코드

DOI QR Code

An investigation on the effect of the wall treatments in RANS simulations of model and full-scale marine propeller flows

  • Choi, Jung-Kyu (Department of Naval Architecture and Ocean Engineering, Mokpo National University) ;
  • Kim, Hyoung-Tae (Department of Naval Architecture and Ocean Engineering, Chungnam National University)
  • Received : 2020.07.24
  • Accepted : 2020.12.04
  • Published : 2020.12.31

Abstract

A numerical analysis is carried out for the marine propellers in open water conditions to investigate the effect of the wall treatments in model and full scale. The standard wall function to apply the low of the wall and the two layer zonal model to calculate the whole boundary layer for a transition phenomenon are used with one turbulence model. To determine an appropriate distance of the first grid point from the wall when using the wall function, a formula based on Reynolds number is suggested, which can estimate the maximum y+ satisfying the logarithmic law. In the model scale, it is confirmed that a transition calculation is required for a model scale propeller with low Reynolds number that the transient region appears widely. While in the full scale, the wall function calculation is recommended for efficient calculations due to the turbulence dominant flow for large Reynolds number.

Keywords

References

  1. ANSYS, 2015. ANSYS Documentation. ANSYS Inc.
  2. Bhattacharyya, Anirban, Krasilnikov, Vladimir, Steen, Sverre, 2016. Scale effects on open water characteristics of a controllable pitch propeller working within different duct designs. Ocean Eng. 112, 226-242. https://doi.org/10.1016/j.oceaneng.2015.12.024
  3. Carrica, P.M., Castro, A.M., Stern, F., 2013. Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids. J. Mar. Sci. Technol. 15, 316-330. https://doi.org/10.1007/s00773-010-0098-6
  4. Castro, A.M., Carrica, P.M., Stern, F., 2011. Full scale self-propulsion computations using discretized propeller for the KRISO container ship KCS. Comput. Fluid 51, 35-47. https://doi.org/10.1016/j.compfluid.2011.07.005
  5. Choi, J.K., 2014. A Study on Estimation of Self-Propulsion Performance of a Ship Using Numerical Analysis. Ph. D. Thesis. Chungnam National University, Daejeon, Rep. of Korea.
  6. Choi, J.K., Kim, H.T., 2010. A study of using wall function for numerical analysis of high Reynolds number turbulent flow. J. Soc. Naval Arch. Korea 47 (5), 647-655. https://doi.org/10.3744/SNAK.2010.47.5.647
  7. Choi, J.E., Kim, J.H., Lee, H.G., 2011. Computational study of the scale effect on resistance and propulsion performance of VLCC. J. Soc. Naval Arch. Korea 48 (3), 222-232. https://doi.org/10.3744/SNAK.2011.48.3.222
  8. Coles, D.E., 1954. Measurements of turbulent friction on a smooth flat plate in supersonic flow. J. Aeronaut. Sci. 21 (7), 433-448. https://doi.org/10.2514/8.3083
  9. EFFORT(European fullscale flow research and technology), 1998. https://cordis.europa.eu/programme/id/FP5-GROWTH.
  10. Fage, A., Falkner, V.M., 1930. An experimental determination of the intensity of friction on the surface of an aerofoil. Proceed. Royal Soc. A 129 (810), 378-410.
  11. Gaggero, S., Villa, D., Brizzolara, S., 2010. RANS and PANEL method for unsteady flow propeller analysis. Proceed. 9th Int. Conf. Hydrodyn. 11-86, 564-569. Shanghai, China October.
  12. ITTC propeller committee, 1978. Report of the propeller committee. 15th Proceedings of International Towing Tank Conference. ITTC, Hague, Netherlands, September.
  13. ITTC propeller committee, 1984. Report of the propeller committee. 17th Proceedings of International Towing Tank Conference, ITTC, Goteborg, Sweden, 8 - 15 September.
  14. Jessup, S.D., 1989. An Experimental Investigation of Viscous Aspects of Propeller Blade Flow. Ph.D. Thesis. The Catholic university of America.
  15. JoRes(Joint Research Project), 2019. https://jores.net/.
  16. Kim, K.S., Kim, K.Y., Ahn, J.W., 2000. Experimental correlation analysis of propeller open-water characteristics at towing tank and cavitation tunnel. J. Soc. Naval Arch. Korea 37 (1), 26-39.
  17. Kim, J., Park, I.R., Kim, K.S., Van, S.H., 2005. RANS simulations for KRISO container ship and VLCC tanker. J. Soc. Naval Arch. Korea 42 (6), 593-600. https://doi.org/10.3744/SNAK.2005.42.6.593
  18. Kim, Min-Geon, Ahn, Hyung Taek, Lee, Jin-Tae, Lee, Hong-Gi, 2014. Fully unstructured mesh based computation of viscous flow around marine propellers. J. Soc. Naval Arch. Korea 51 (2), 162-170. https://doi.org/10.3744/SNAK.2014.51.2.162
  19. Kim, K.S., Kim, Y.C., Kim, J., Van, S.H., 2018. RANS simulations for propeller open water tests in towing tank. Proceedings of the Twenty-Eighth(2018) International Ocean and Polar Engineering Conference. ISOPE, pp. 782-789.
  20. Kulczyk, J., Skraburski, L., Zawislak, M., 2007. Analysis of screw propeller 4119 using the Fluent system. Arch. Civil and Mech. Eng. 7 (4), 130-137.
  21. Launder, B.E., Spalding, D.B., 1974. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3, 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  22. Lee, Joon-Hyoung, Kim, Moon-Chan, Shin, Yong-Jin, Kang, Jin-Gu, Jang, Hyun-Gil, 2017. A study on performance of tip rake propeller in propeller open water condition. J. Soc. Naval Arch. Korea 54 (1), 10-17. https://doi.org/10.3744/SNAK.2017.54.1.10
  23. Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., Volker, S., 2006. A correlation-based transition model using local variables-Part I: Model formulation. J. Turbomach. 128 (3), 413-422. https://doi.org/10.1115/1.2184352
  24. Moran-Guerrero, A., Gonzales-Gutierrez, L.M., Oliva-Remola, A., 2018. On the influence of transition modeling and crossflow effects on open water propeller simulations. Ocean Eng. 156, 101-119. https://doi.org/10.1016/j.oceaneng.2018.02.068
  25. Müller, S.B., Abdel-Maksoud, M., Hilbert, G., 2009. Scale effects on propellers for large container vessels. Proceedings Of First International Symposium on Marine Propulsors, Trondheim, Norway. June.
  26. Paik, Kwang-Jun, 2017. Numerical study on the hydrodynamic characteristics of a propeller operating beneath a free surface. Int. J. Naval Arch. Ocean Eng. 9 (2017), 655-667. https://doi.org/10.1016/j.ijnaoe.2017.02.006
  27. Patel, V.C., 1998. Flow at high Reynolds number and over rough surfaces-achilles heel of CFD. J. Fluid Eng. 120 (3), 1-26. https://doi.org/10.1115/1.2820682
  28. Rao, G.N.V., Keshavan, N.R., 1972. Axisymmetric turbulent boundary layers in zero pressure-gradient flows. J. Appl. Mech. 39 (1), 25-32. https://doi.org/10.1115/1.3422623
  29. Schlichting, H., 1979. Boundary layer theory, Seventh ed. McGraw-Hill, USA.
  30. https://simman2014.dk/, SIMMAN, 2014.
  31. Walters, D.K., Cokljat, D., 2008. A three-equation Eddy-viscosity model for Reynold-averaged Navier-Stokes simulations of transitional flow. J. Fluid Eng. 130 (12), 14, 121401. https://doi.org/10.1115/1.2979230
  32. Wang, Xiao, Walters, Keith, 2012. Computational analysis of marine-propeller performance using transition-sensitive turbulence modeling. J. Fluid Eng. 134 (7), 10, 071107. https://doi.org/10.1115/1.4005729
  33. White, F.H., 1974. Viscous Fluid Flow. McGraw-Hill, USA.
  34. Yao, Huilan, Zhang, Huaixin, 2018. A simple method for estimating transition locations on blade surface of model propellers to be used for calculating viscous force. Int. J. Naval Arch. Ocean Eng. 10 (2018), 477-490. https://doi.org/10.1016/j.ijnaoe.2017.09.002
  35. Youssef, F.A., Kassab, S.Z., Al-Fahed, S.F., 1998. Low Reynolds number axisymmetric turbulent boundary layer on a cylinder. Mech. Res. Commun. 25 (1), 33-48. https://doi.org/10.1016/S0093-6413(98)00005-6

Cited by

  1. A Numerical Study on Axial Pump Performance for Large Cavitation Tunnel Operation vol.9, pp.9, 2021, https://doi.org/10.3390/pr9091523
  2. Fluid-structure interaction Simulation for Hydro-elastic Performance of marine Propeller at Full-Scale vol.2029, pp.1, 2021, https://doi.org/10.1088/1742-6596/2029/1/012041