DOI QR코드

DOI QR Code

Experimental Measurement and Correlation of two α-Amino Acids Solubility in Aqueous Salts Solutions from 298.15 to 323.15 K

  • 투고 : 2019.06.12
  • 심사 : 2019.08.06
  • 발행 : 2020.02.01

초록

By the gravimetric method at atmospheric pressure, the solubility of two α-amino acids was resolved over temperatures from (293.15 to 323.15) K. The α-amino acids studied were L-arginine and L-histidine. Results showed a salting-out effect on the solubility of the tested amino compounds. It is obvious that there was an increase in the solubility, in aqueous chloride solutions, with the increasing temperature. Results were translated regarding the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The solubility data was precisely associated with a semi-empirical equation. The standard molar Gibbs free energies of transfer of selected α-amino compounds (ΔtrGo) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. The decrease in solubility is correlated to the positive (ΔtrGo) value which is most part of the enthalpic origin.

키워드

참고문헌

  1. Bhattacharyya, A. and Bhattacharya, S. K., "Chemical Transfer Energies of Some Homologous Amino Acids and the -$CH_2$- Group in Aqueous DMF: Solvent Effect on Hydrophobic Hydration and Three Dimensional Solvent Structure," J. Solut. Chem., 42(11), 2149-2167(2013). https://doi.org/10.1007/s10953-013-0103-x
  2. Scott, E. L., Peter, F. and Sanders J. P. M., "Biomass in the Manufacture of Industrial Products - The use of Proteins and Amino Acids," Appl. Microbiol. Biotechnol., 75(4), 751-762(2007). https://doi.org/10.1007/s00253-007-0932-x
  3. Lammens, T. M., Franssen, M. C. R., Scott, E. L. and Sanders, J. P. M., "Availability of Protein-derived Amino Acids as Feedstock for the Production of Bio-based Chemicals," Biomass Bioenergy, 44(9), 168-181(2012). https://doi.org/10.1016/j.biombioe.2012.04.021
  4. Mahali, K., Roy, S. and Dolui, B. K., "Solvation Thermodynamics of a Series of Homologous ${\alpha}$-amino Acids in Non-aqueous Binary Mixtures of Protic Ethylene-glycol and Dipolar Aprotic Acetonitrile," J. Solution Chem., 42(5), 1096-1110(2013). https://doi.org/10.1007/s10953-013-0005-y
  5. Roy, S., Hossain, A. and Dolui, B. K., "Solubility and Chemical Thermodynamics of d,l-Alanine and d,l-serine in Aqueous NaCl and KCl Solutions," J. Chem. Eng. Data, 61(1), 132-141(2016). https://doi.org/10.1021/acs.jced.5b00351
  6. Thombre, S. M. and Sarwade, B. D., "Synthesis and Biodegradability of Polyaspartic Acid: A Critical Review," J. Macromol. Sci. A, 42(9), 1299-1315(2005). https://doi.org/10.1080/10601320500189604
  7. Mandal, U., Bhattacharya, S., Das, K. and Kundu, K. K., "Medium Effects on Deprotonation of Mono- and di-protonated Piperazines in Binary Aqueous Mixtures of Some Protic, Aprotic and Dipolar Aprotic Cosolvents," Z. Phys. Chem., 159(1), 21-36(1988). https://doi.org/10.1524/zpch.1988.159.Part_1.021
  8. Held, C., Cameretti, L. F. and Sadowski, G., "Measuring and Modeling Activity Coefficients in Aqueous Amino-acid Solutions," Ind. Eng. Chem. Res., 50(1), 131-141(2011). https://doi.org/10.1021/ie100088c
  9. Lu, J., Wang, X. J., Yang, X. and Ching, C. B., "Solubilities of Glycine and Its Oligopeptides in Aqueous Solutions," J. Chem. Eng. Data, 51(5), 1593-1596(2006). https://doi.org/10.1021/je0600754
  10. Pradhan A. A. and Vera, J. H., "Effect of Acids and Bases on the Solubility of Amino Acids," Fluid Phase Equilib., 152(1), 121-132(1998). https://doi.org/10.1016/S0378-3812(98)00387-2
  11. Romero, C. M. and Oviedo, C. D., "Effect of Temperature on the Solubility of Alpha-amino Acids and Alpha, Omega - Amino acids in Water," J. Solution Chem., 42(6), 1355-1362(2013). https://doi.org/10.1007/s10953-013-0031-9
  12. Koseoglu, F., Kilic, E. and Dogan, A., "Studies on the Protonation Constants and Solvation of Alpha-amino Acids in Dioxanwater Mixtures," Anal. Biochem., 277(2), 243-246(2000). https://doi.org/10.1006/abio.1999.4371
  13. Khoshkbarchi, M. K. and Vera, J. H., "Effect of KCl and NaCl on the Solubility of Amino Acids at 298.2 K: Measurement and Modeling," Ind. Eng. Chem. Res., 36(6), 2445-2451(1997). https://doi.org/10.1021/ie9606395
  14. Pradhan, A. A. and Vera J. H., "Effect of Anions on the Solubility of Zwitterionic Amino Acids," J. Chem. Eng. Data, 45(1), 140-143 (2000). https://doi.org/10.1021/je9902342
  15. Roy, S., Guin, P. S., Mahali, K. and Dolui B. K., "Amino Acid Solubility Under the Influence of NaCl at 298.15 K," J. Mol. Liq., 218, 316-318(2016). https://doi.org/10.1016/j.molliq.2016.02.054
  16. Anfinsen, C. B. and Seheraga, H. A., "Experimental and Theoretical Aspects of Protein Folding," Adv. Protein Chem. 29, 205-300(1975). https://doi.org/10.1016/S0065-3233(08)60413-1
  17. El-Dossoki, F. I., "Effect of the Charge and the Nature of Both Cations and Anions on the Solubility of Zwitterionic Amino Acids, Measurements and Modeling," J. Solution Chem., 39(9), 1311-1326 (2010). https://doi.org/10.1007/s10953-010-9580-3
  18. Roy, S., Mahali, K., Akhter, S. and Dolui, B. K., "Thermodynamic Solvation of ${\alpha}$-amino Acids in Aqueous Mixtures of Dipolar Aprotic N,N-Dimethyl Formamide," Asian J. Chem., 25(12), 6661-6665(2013). https://doi.org/10.14233/ajchem.2013.14406
  19. Reading, J. F., Watson, I. D. and Hedwig, G. R., "Thermodynamic Properties of Peptide Solutions 5. Partial Molar Volumes of Glycylglycine, Glycyl-DL-leucine, and Glycyl-DL-serine at 308.15 and 318.15 K," J. Chem.Thermodyn., 22(2), 159-165(1990). https://doi.org/10.1016/0021-9614(90)90079-6
  20. Abualreish, M. J. and Noubigh, A., "Evaluation of Thermodynamic Properties and Correlation of L-glutamic Acid Solubility in Some Aqueous Chloride Solutions from 298.15 to 323.15 K," Can. J. Chem (2019).
  21. Noubigh, A. and Akremi, A., "Solution Thermodynamics of Trans-cinnamic Acid in (methanol + water) and (ethanol + water) Mixtures at Different Temperatures," J. Mol. Liq., 274, 752-758 (2019). https://doi.org/10.1016/j.molliq.2018.09.131
  22. Noubigh, A., Abderrabba, M. and Provost, E., "Salt Addition Effect on Partition Coefficient of Some Phenolic Compounds Constituents of Olive Mill Wastewater in 1-octanol-water System at 298.15 K," J. Iran. Chem. Soc., 6(1), 168-176(2009). https://doi.org/10.1007/BF03246517
  23. Noubigh, A. and Abderrabba, M., "Solid-liquid Phase Equilibrium and Thermodynamic Properties of Vanillic Acid in Different Pure Solvents," J. Mol. Liq., 223, 261-266(2016). https://doi.org/10.1016/j.molliq.2016.07.004
  24. Noubigh, A. and Akrmi, A., "Temperature Dependent Solubility of Vanillic Acid in Aqueous Methanol Mixtures: Measurements and Thermodynamic Modeling," J. Mol. Liq., 220, 277-282(2016). https://doi.org/10.1016/j.molliq.2016.04.095
  25. Bowden, N. A., Sanders, J. P. M. and Bruins, M. E., "Solubility of the Proteinogenic ${\alpha}$-Amino Acids in Water, Ethanol, and Ethanol-water Mixtures," J. Chem. Eng. Data, 63(3), 488-497(2018). https://doi.org/10.1021/acs.jced.7b00486
  26. Hayashi, K., Matsuda, T., Takeyama, T. and Hino, T., "Solubilities Studies of Basic Amino Acids," Biosci. Biotechnol. Biochem., 30(4), 378-384(1966).
  27. Liu, Y., Wang, Y., Liu, Y., Xu, S., Chen, M., Du, S. and Gong, J., "Solubility of L-histidine in Different Aqueous Binary Solvent Mixtures from 283.15 K to 318.15 K with Experimental Measurement and Thermodynamic Modeling," J. Chem. Thermodyn. 105(2), 1-14(2017). https://doi.org/10.1016/j.jct.2016.09.039
  28. Noubigh, A., Mgaidi, A., Abderrabba, M., Provost, E. and Furst, W., "Effect of Salts on the Solubility of Phenolic Compounds: Experimental Measurements and Modeling," J. Sci. Food Agr. 87(5), 738-788(2007).
  29. Eisen, E. O. and Joffe, J., "Salt Effects in Liquid-liquid Equilibria," J. Chem. Eng. Data, 11(4) 480-484(1966). https://doi.org/10.1021/je60031a007
  30. Gomis, V., Ruiz, F., De Vera, G. and Saquete, M. D., "Liquidliquid- solid Equilibria for the Ternary Systems Water-sodium Chloride or Potassium Chloride-1-propanol or 2-propanol," Fluid Phase Equilib., 98, 141-147(1994). https://doi.org/10.1016/0378-3812(94)80113-4
  31. Mullin, J. W., Crystallization. 3rd ed., Butterworth-Heinemann, Oxford, 2000.
  32. Jing, D. and Wang, J., "Solubility of Penicillin Sulfoxide in Different Solvents," J. Chem. Eng. Data, 55(1), 508-509(2010). https://doi.org/10.1021/je900326e
  33. Mendonça, A. F. S. S., Formigo, D. T. R. and Lampreia, I. M. S., "Solubility of Triethylamine in Tetraethylammonium Chloride Aqueous Solutions from 20 to $35^{\circ}C$," J. Solution Chem., 31(8), 653-670(2002). https://doi.org/10.1023/A:1020244810026
  34. Hossain, A. and Roy, S., "Solubility and Solute-solvent Interactions of DL-alanine and DL-serine in Aqueous Potassium Nitrate Solutions," J. Mol. Liq., 249, 1133-1137(2018). https://doi.org/10.1016/j.molliq.2017.11.104
  35. Imran, S., Hossain, A., Mahali, K., Roy, A. S., Guin, P. S. and Roy, S., "Role of Solubility and Solvation Thermodynamics on the Stability of L-phenylalanine in Aqueous Methanol and Ethanol Solutions," J. Mol. Liq., 265, 693-700(2018). https://doi.org/10.1016/j.molliq.2018.07.019
  36. Das, P., Chatterjee, S. and Basumallick, I., "Thermodynamic Studies on Amino Acid Solvation in Aqueous Urea," J. Chin. Chem. Soc., 51(1), 1-6(2004). https://doi.org/10.1002/jccs.200400001
  37. Bretti, C., Cigala, R. M., Giuffre, O., Lando, G. and Sammartano, S., "Modeling Solubility and Acid-base Properties of Some Polar Side Chain Amino Acids in NaCl and $(CH_3)_4NCl$ Aqueous Solutions at Different Ionic Strengths and Temperatures," Fluid Phase Equilib., 459, 51-64(2018). https://doi.org/10.1016/j.fluid.2017.11.030
  38. Carta, R. and Tola, G., "Solubilities of l-Cystine, l-Tyrosine, l-Leucine, and Glycine in Aqueous Solutions at Various pHs and NaCl Concentrations," J. Chem. Eng. Data., 41(3), 414-417(1996). https://doi.org/10.1021/je9501853
  39. Noubigh, A., Abderrabba, M. and Provost, E., "Temperature and Salt Addition Effects on the Solubility Behavior of Some Phenolic Compounds in Water," J. Chem. Thermodyn., 39(2), 297-303(2007). https://doi.org/10.1016/j.jct.2006.06.014