DOI QR코드

DOI QR Code

Natural Variation in Virulence of Acidovorax citrulli Isolates That Cause Bacterial Fruit Blotch in Watermelon, Depending on Infection Routes

  • Song, Yu-Rim (Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Hwang, In Sun (Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Oh, Chang-Sik (Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University)
  • Received : 2019.10.03
  • Accepted : 2019.12.02
  • Published : 2020.02.01

Abstract

Acidovorax citrulli causes bacterial fruit blotch in Cucurbitaceae, including watermelon. Although A. citrulli is a seed-borne pathogen, it can cause diverse symptoms in other plant organs like leaves, stems and fruits. To determine the infection routes of A. citrulli, we examined the virulence of six isolates (Ac0, Ac1, Ac2, Ac4, Ac8, and Ac11) on watermelon using several inoculation methods. Among six isolates, DNA polymorphism reveals that three isolates Ac0, Ac1, and Ac4 belong to Clonal Complex (CC) group II and the others do CC group I. Ac0, Ac4, and Ac8 isolates efficiently infected seeds during germination in soil, and Ac0 and Ac4 also infected the roots of watermelon seedlings wounded prior to inoculation. Infection through leaves was successful only by three isolates belonging to CC group II, and two of these also infected the mature watermelon fruits. Ac2 did not cause the disease in all assays. Interestingly, three putative type III effectors (Aave_2166, Aave_2708, and Aave_3062) with intact forms were only found in CC group II. Overall, our results indicate that A. citrulli can infect watermelons through diverse routes, and the CC grouping of A. citrulli was only correlated with virulence in leaf infection assays.

Keywords

References

  1. Alfano, J. R. and Collmer, A. 2004. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42:385-414. https://doi.org/10.1146/annurev.phyto.42.040103.110731
  2. Alves, A. D. O., Xavier, A. D. S., Viana, I. O., Mariano, R. D. L. R. and Silveira, E. B. D. 2010. Colonization dynamics of Acidovorax citrulli in melon. Trop. Plant Pathol. 35:368-372. https://doi.org/10.1590/S1982-56762010000600005
  3. Bahar, O. and Burdman, S. 2010. Bacterial fruit blotch: a threat to the cucurbit industry. Isr. J. Plant Sci. 58:19-31. https://doi.org/10.1560/IJPS.58.1.19
  4. Bahar, O., Goffer, T. and Burdman, S. 2009. Type IV Pili are required for virulence, twitching motility, and biofilm formation of Acidovorax avenae subsp. citrulli. Mol. Plant-Microbe Interact. 22:909-920. https://doi.org/10.1094/MPMI-22-8-0909
  5. Bartetzko, V., Sonnewald, S., Vogel, F., Hartner, K., Stadler, R., Hammes, U. Z. and Bornke, F. 2009. The Xanthomonas campestris pv. vesicatoria type III effector protein XopJ inhibits protein secretion: evidence for interference with cell wall-associated defense responses. Mol. Plant-Microbe Interact. 22:655-664. https://doi.org/10.1094/MPMI-22-6-0655
  6. Block, C. C. and Shepherd, L. M. 2008. Long-term survival and seed transmission of Acidovorax avenae subsp. citrulli in melon and watermelon seed. Plant Health Prog. 9:36. https://doi.org/10.1094/PHP-2008-1219-01-BR
  7. Bogdanove, A. J., Beer, S. V., Bonas, U., Boucher, C. A., Collmer, A., Coplin, D. L., Cornelis, G. R., Huang, H. C., Hutcheson, S. W., Panopoulos, N. J. and Van Gijsegem, F. 1996. Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol. Microbiol. 20:681-683. https://doi.org/10.1046/j.1365-2958.1996.5731077.x
  8. Boureau, T., Routtu, J., Roine, E., Taira, S. and Romantschuk, M. 2002. Localization of hrpA-induced Pseudomonas syringae pv. tomato DC3000 in infected tomato leaves. Mol. Plant Pathol. 3:451-460. https://doi.org/10.1046/j.1364-3703.2002.00139.x
  9. Bove, J. M. and Garnier, M. 2002. Phloem-and xylem-restricted plant pathogenic bacteria. Plant Sci. 163:1083-1098. https://doi.org/10.1016/S0168-9452(02)00276-5
  10. Burdman, S. and Walcott, R. 2012. Acidovorax citrulli: generating basic and applied knowledge to tackle a global threat to the cucurbit industry. Mol. Plant Pathol. 13:805-815. https://doi.org/10.1111/j.1364-3703.2012.00810.x
  11. Chalupowicz, L., Dror, O., Reuven, M., Burdman, S. and Manulis-Sasson, S. 2015. Cotyledons are the main source of secondary spread of Acidovorax citrulli in melon nurseries. Plant Pathol. 64:528-536. https://doi.org/10.1111/ppa.12294
  12. Cheong, M. S., Kirik, A., Kim, J.-G., Frame, K., Kirik, V. and Mudgett, M. B. 2014. AvrBsT acetylates Arabidopsis ACIP1, a protein that associates with microtubules and is required for immunity. PLoS Pathog. 10:e1003952. https://doi.org/10.1371/journal.ppat.1003952
  13. Choi, O., Park, J.-J. and Kim, J. 2016. Tetranychus urticae (Acari: Tetranychidae) transmits Acidovorax citrulli, causal agent of bacterial fruit blotch of watermelon. Exp. Appl. Acarol. 69:445-451. https://doi.org/10.1007/s10493-016-0048-z
  14. Ciesiolka, L. D., Hwin, T., Gearlds, J. D., Minsavage, G. V., Saenz, R., Bravo, M., Handley, V., Conover, S. M., Zhang, H., Caporgno, J., Phengrasamy, N. B., Toms, A. O., Stall, R. E. and Whalen, M. C. 1999. Regulation of expression of avirulence gene avrRxv and identification of a family of host interaction factors by sequence analysis of avrBsT. Mol. Plant- Microbe Interact. 12:35-44. https://doi.org/10.1094/MPMI.1999.12.1.35
  15. Dutta, B., Avci, U., Hahn, M. G. and Walcott, R. R. 2012. Location of Acidovorax citrulli in infested watermelon seeds is influenced by the pathway of bacterial invasion. Phytopathology 102:461-468. https://doi.org/10.1094/PHYTO-10-11-0286-R
  16. Eckshtain-Levi, N., Munitz, T., Zivanovic, M., Traore, S. M., Sproer, C., Zhao, B., Welbaum, G., Walcott, R., Sikorski, J. and Burdman, S. 2014. Comparative analysis of type III secreted effector genes reflects divergence of Acidovorax citrulli strains into three distinct lineages. Phytopathology 104:1152-1162. https://doi.org/10.1094/PHYTO-12-13-0350-R
  17. Escolar, L., Van Den Ackerveken, G., Pieplow, S., Rossier, O. and Bonas, U. 2001. Type III secretion and in planta recognition of the Xanthomonas avirulence proteins AvrBs1 and AvrBsT. Mol. Plant Pathol. 2:287-296. https://doi.org/10.1046/j.1464-6722.2001.00077.x
  18. Feng, J., Schuenzel, E. L., Li, J. and Schaad, N. W. 2009. Multilocus sequence typing reveals two evolutionary lineages of Acidovorax avenae subsp. citrulli. Phytopathology 99:913-920. https://doi.org/10.1094/PHYTO-99-8-0913
  19. Fujiwara, S., Kawazoe, T., Ohnishi, K., Kitagawa, T., Popa, C., Valls, M., Genin, S., Nakamura, K., Kuramitsu, Y., Tanaka, N. and Tabuchi, M. 2016. RipAY, a plant pathogen effector protein, exhibits robust ${\gamma}$-glutamyl cyclotransferase activity when stimulated by eukaryotic thioredoxins. J. Biol. Chem. 291:6813-6830. https://doi.org/10.1074/jbc.M115.678953
  20. Han, Q., Zhou, C., Wu, S., Liu, Y., Triplett, L., Miao, J., Tokuhisa, J., Deblais, L., Robinson, H., Leach, J. E. and Zhao, B. 2015. Crystal structure of Xanthomonas AvrRxo1-ORF1, a type III effector with a polynucleotide kinase domain, and its interactor AvrRxo1-ORF2. Structure 23:P1900-P1909. https://doi.org/10.1016/j.str.2015.06.030
  21. Hopkins, D. L. and Thompson, C. M. 2002. Seed transmission of Acidovorax avenae subsp. citrulli in cucurbits. HortScience 37:924-926. https://doi.org/10.21273/HORTSCI.37.6.924
  22. Kim, N. H., Choi, H. W. and Hwang, B. K. 2010. Xanthomonas campestris pv. vesicatoria effector AvrBsT induces cell death in pepper, but suppresses defense responses in tomato. Mol. Plant-Microbe Interact. 23:1069-1082. https://doi.org/10.1094/MPMI-23-8-1069
  23. Kubota, M., Hagiwara, N. and Shirakawa, T. 2012. Disinfection of seeds of cucurbit crops infested with Acidovorax citrulli with dry heat treatment. J. Phytopathol. 160:364-368. https://doi.org/10.1111/j.1439-0434.2012.01913.x
  24. Latin, R. X. and Hopkins, D. L. 1995. Bacterial fruit blotch of watermelon: the hypothetical exam question becomes reality. Plant Dis. 79:761-765. https://doi.org/10.1094/PD-79-0761
  25. Lo, T., Koulena, N., Seto, D., Guttman, D. S. and Desveaux, D. 2017. The HopF family of Pseudomonas syringae type III secreted effectors. Mol. Plant Pathol. 18:457-468. https://doi.org/10.1111/mpp.12412
  26. Makizumi, Y., Igarashi, M., Gotoh, K., Murao, K., Yamamoto, M., Udonsri, N., Ochiai, H., Thummabenjapone, P. and Kaku, H. 2011. Genetic diversity and pathogenicity of cucurbitassociated Acidovorax. J. Gen. Plant Pathol. 77:24-32. https://doi.org/10.1007/s10327-010-0273-y
  27. Mew, T. W., Alvarez, A. M., Leach, J. E. and Swings, J. 1993. Focus on bacterial blight of rice. Plant Dis. 77:5-12. https://doi.org/10.1094/PD-77-0005
  28. Minsavage, G. V., Dahlbeck, D., Whalen, M. C., Kearney, B., Bonas, U., Staskawicz, B. J. and Stall, R. E. 1990. Genefor-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria - pepper interactions. Mol. Plant-Microbe Interact. 3:41-47. https://doi.org/10.1094/MPMI-3-041
  29. Neto, E. B. S., Silveira, E. B., Mariano, R. L. R., Nogueira, N. L., Rossi, M. L. and Santos, L. A. 2006. Penetration and colonization of Acidovorax avenae subsp. citrulli in leaves, seeds and fruits of melon type yellow. Fitopatol. Bras. 31:84-88 (in Portuguese). https://doi.org/10.1590/S0100-41582006000100015
  30. Park, H.-J., Seong, H. J., Sul, W. J., Oh, C.-S. and Han, S.-W. 2017. Complete genome sequence of Acidovorax citrulli strain KACC17005, a causal agent for bacterial fruit blotch on watermelon. Korean J. Microbiol. 53:340-341. https://doi.org/10.7845/kjm.2017.7084
  31. Potnis, N., Minsavage, G., Smith, J. K., Hurlbert, J. C., Norman, D., Rodrigues, R., Stall, R. E. and Jones, J. B. 2012. Avirulence proteins AvrBs7 from Xanthomonas gardneri and AvrBs1.1 from Xanthomonas euvesicatoria contribute to a novel gene-for-gene interaction in pepper. Mol. Plant- Microbe Interact. 25:307-320. https://doi.org/10.1094/MPMI-08-11-0205
  32. Potnis, N., Timilsina, S., Strayer, A., Shantharaj, D., Barak, J. D., Paret, M. L., Vallad, G. E. and Jones, J. B. 2015. Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Mol. Plant Pathol. 16:907-920. https://doi.org/10.1111/mpp.12244
  33. Rahimi-Midani, A., Lee, Y. S., Kang, S.-W., Kim, M.-K. and Choi, T.-J. 2018. First isolation and molecular characterization of bacteriophages infecting Acidovorax citrulli, the causal agent of bacterial fruit blotch. Plant Pathol. J. 34:59-64. https://doi.org/10.5423/PPJ.NT.08.2017.0190
  34. Rane, K. K. and Latin, R. X. 1992. Bacterial fruit blotch of watermelon: association of the pathogen with seed. Plant Dis. 76:509-512. https://doi.org/10.1094/PD-76-0509
  35. Schaad, N. W., Postnikova, E. and Randhawa, P. 2003. Emergence of Acidovorax avenae subsp. citrulli as a crop threatening disease of watermelon and melon. In: Pseudomonas syringae and related pathogens: biology and genetic, eds. by N. S. Iacobellis, A. Collmer, S. W. Hutcheson, J. W. Mansfield, C. E. Morris, J. Murillo, N. W. Schaad, D. E. Stead, G. Surico and M. S. Ullrich, pp. 573-581. Kluwer Academic Publishers, Dordrecht, Netherlands.
  36. Schaad, N. W., Postnikova, E., Sechler, A., Claflin, L. E., Vidaver, A. K., Jones, J. B., Agarkova, I., Ignatov, A., Dickstein, E. and Ramundo, B. A. 2008. Reclassification of subspecies of Acidovorax avenae as A. Avenae (Manns 1905) emend., A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli (Schaad et al., 1978) comb. nov., and proposal of A. oryzae sp. nov. Syst. Appl. Microbiol. 31:434-446. https://doi.org/10.1016/j.syapm.2008.09.003
  37. Schaad, N. W., Song, W.-Y. and Hatziloukas, E. 2000. PCR primers for detection of plant pathogenic species and subspecies of Acidovorax. United States Department of Agriculture patents No. 6146834.
  38. Schaad, N. W., Sowell G. Jr., Goth, R. W., Colwell, R. R. and Webb, R. E. 1978. Pseudomonas pseudoalcaligenes subsp. citrulli subsp. nov. Int. J. Syst. Bacteriol. 28:117-125. https://doi.org/10.1099/00207713-28-1-117
  39. Scortichini, M., Marcelletti, S., Ferrante, P., Petriccione, M. and Firrao, G. 2012. Pseudomonas syringae pv. actinidiae: a reemerging, multi-faceted, pandemic pathogen. Mol. Plant Pathol. 13:631-640. https://doi.org/10.1111/j.1364-3703.2012.00788.x
  40. Shidore, T., Broeckling, C. D., Kirkwood, J. S., Long, J. J., Miao, J., Zhao, B., Leach, J. E. and Triplett, L. R. 2017. The effector AvrRxo1 phosphorylates NAD in planta. PLoS Pathog. 13:e1006442. https://doi.org/10.1371/journal.ppat.1006442
  41. Song, J. Y., Park, S. Y., Seo, M. W., Nam, M. H., Lim, H. S., Lee, S.-C., Lee, Y. S. and Kim, H. G. 2015. Genetic characteristics of Acidovorax citrulli population causing bacterial fruit blotch against cucurbits in Korea. Res. Plant Dis. 21:82-88 (in Korean). https://doi.org/10.5423/RPD.2015.21.2.082
  42. Sonnewald, U. and Fernie, A. R. 2018. Next-generation strategies for understanding and influencing source-sink relations in crop plants. Curr. Opin. Plant Biol. 43:63-70. https://doi.org/10.1016/j.pbi.2018.01.004
  43. Szczesny, R., Büttner, D., Escolar, L., Schulze, S., Seiferth, A. and Bonas, U. 2010. Suppression of the AvrBs1-specific hypersensitive response by the YopJ effector homolog AvrBsT from Xanthomonas depends on a SNF1-related kinase. New Phytol. 187:1058-1074. https://doi.org/10.1111/j.1469-8137.2010.03346.x
  44. Tans-Kersten, J., Huang, H. and Allen, C. 2001. Ralstonia solanacearum needs motility for invasive virulence on tomato. J. Bacteriol. 183:3597-3605. https://doi.org/10.1128/JB.183.12.3597-3605.2001
  45. Triplett, L. R., Shidore, T., Long, J., Miao, J., Wu, S., Han, Q., Zhou, C., Ishihara, H., Li, J., Zhao, B. and Leach, J. E. 2016. AvrRxo1 is a bifunctional type III secreted effector and toxinantitoxin system component with homologs in diverse environmental contexts. PLoS ONE 11:e0158856. https://doi.org/10.1371/journal.pone.0158856
  46. Ustun, S., Bartetzko, V. and Bornke, F. 2013. The Xanthomonas campestris type III effector XopJ targets the host cell proteasome to suppress salicylic-acid mediated plant defence. PLoS Pathog. 9:e1003427. https://doi.org/10.1371/journal.ppat.1003427
  47. Ustun, S. and Bornke, F. 2015. The Xanthomonas campestris type III effector XopJ proteolytically degrades proteasome subunit RPT6. Plant Physiol. 168:107-119. https://doi.org/10.1104/pp.15.00132
  48. Vanneste, J. L. 2000. Fire blight: the disease and its causative agent, Erwinia amylovora. CABI Publishing, Wallingford, UK. 370 pp.
  49. Walcott, R. R., Fessehaie, A. and Castro, A. 2004. Differences in pathogenicity between two genetically distinct groups of Acidovorax avenae subsp. citrulli on cucurbit hosts. J. Phytopathol. 152:277-285. https://doi.org/10.1111/j.1439-0434.2004.00841.x
  50. Walcott, R. R., Gitaitis, R. D. and Castro, A. C. 2003. Role of blossoms in watermelon seed infestation by Acidovorax avenae subsp. citrulli. Phytopathology 93:528-534. https://doi.org/10.1094/PHYTO.2003.93.5.528
  51. Washington, E. J., Mukhtar, M. S., Finkel, O. M., Wan, L., Banfield, M. J., Kieber, J. J. and Dangl, J. L. 2016. Pseudomonas syringae type III effector HopAF1 suppresses plant immunity by targeting methionine recycling to block ethylene induction. Proc. Natl. Acad. Sci. U. S. A. 113:E3577-E3586. https://doi.org/10.1073/pnas.1606322113
  52. Webb, R. E. and Goth, R. W. 1965. A seedborne bacterium isolated from watermelon. Plant Dis. Rep. 49:818-821.
  53. Willems, A., Goor, M., Thielemans, S., Gillis, M., Kersters, K. and De Ley, J. 1992. Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int. J. Syst. Bacteriol. 42:107-119. https://doi.org/10.1099/00207713-42-1-107
  54. Yan, S., Yang, Y., Wang, T., Zhao, T. and Schaad, N. W. 2013. Genetic diversity analysis of Acidovorax citrulli in China. Eur. J. Plant Pathol. 136:171-181. https://doi.org/10.1007/s10658-012-0152-9