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Abstract. Let N be the set of nonnegative integers and A be a 2-torsion free triangular

algebra over a commutative ring R. In the present paper, under some lenient assumptions

on A, it is proved that if ∆ = {δn}n∈N is a sequence of R-linear mappings δn : A → A

satisfying δn([[x, y], z]) =
∑

i+j+k=n

[[δi(x), δj(y)], δk(z)] for all x, y, z ∈ A with xy = 0 (resp.

xy = p, where p is a nontrivial idempotent of A), then for each n ∈ N, δn = dn + τn; where

dn : A → A is R-linear mapping satisfying dn(xy) =
∑

i+j=n

di(x)dj(y) for all x, y ∈ A, i.e.

D = {dn}n∈N is a higher derivation on A and τn : A → Z(A) (where Z(A) is the center of

A) is an R-linear map vanishing at every second commutator [[x, y], z] with xy = 0 (resp.

xy = p).

1. Introduction and Preliminaries

Let R be a commutative ring with unity, A be an algebra over R and Z(A) be
the center of A. Recall that an R-linear map d : A→ A is called a derivation on A

if d(xy) = d(x)y+xd(y) holds for all x, y ∈ A. An R-linear map δ : A→ A is called
a Lie derivation on A if δ([x, y]) = [δ(x), y] + [x, δ(y)] holds for all x, y ∈ A, where
[x, y] = xy−yx is the usual Lie product. An R-linear map δ : A→ A is called a Lie
triple derivation on A if δ([[x, y], z]) = [[δ(x), y], z] + [[x, δ(y)], z] + [[x, y], δ(z)] holds
for all x, y, z ∈ A. It is easy to check that every derivation on A is a Lie derivation
on A and that every Lie derivation on A is a Lie triple derivation on A. However,
the converse need not be true in general. For example if we consider the algebra A

of all 3×3 strictly upper triangular matrices over Z, the ring of integers, and define
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a map L : A→ A such that L

 0 x y
0 0 z
0 0 0

 =

 0 y 0
0 0 z
0 0 0

.

Then it can easily be seen that L is a Lie triple derivation on A which is neither a
derivation nor a Lie derivation on A. Now, let N be the set of nonnegative integers
and ∆ = {δn}n∈N be a sequence of R-linear mappings δn : A → A such that
δ0 = idA, the identity map on A. Then ∆ is said to be

(i) a higher derivation on A if

δn(xy) =
∑
i+j=n

δi(x)δj(y), for all x, y ∈ A & n ∈ N;

(ii) a Lie higher derivation on A if

δn([x, y]) =
∑
i+j=n

[δi(x), δj(y)], for all x, y ∈ A & n ∈ N;

(iii) a Lie triple higher derivation on A if

δn([[x, y], z]) =
∑

i+j+k=n

[[δi(x), δj(y)], δk(z)], for all x, y, z ∈ A & n ∈ N.

It is also easy to observe that there exists Lie triple higher derivation on an algebra
A which is not a Lie higher derivation on A. For example consider the algebra A

of all 3× 3 strictly upper triangular matrices over the field Q of rational numbers,
and consider the sequence L = {Ln}n∈N of linear mappings Ln : A→ A such that
Ln = Ln

n! , where L is Lie triple derivation on A which is not a Lie derivation on A.
Then by using induction on n, it can be easily verified that L is a Lie triple higher
derivation on A but not a Lie higher derivation on A.

The R-algebra A = Tri(A,M,B) =

{(
a m
0 b

)
a ∈ A,m ∈ M, b ∈ B

}
under

the usual matrix operations is called a triangular algebra, where A and B are unital
algebras over R and M is an (A,B)-bimodule. Recall that a left (resp. right) A-
module M is faithful if aM = 0 (resp. Ma = 0) implies that a = 0 for every a ∈ A.
The notion of triangular ring was first introduced by Chase [5] in 1960. Further, in
the year 2000, Cheung [7] initiated the study of linear maps on triangular algebras.
He described Lie derivations, commuting maps and automorphisms of triangular
algebras (see for reference [8, 9]).

In the recent years, derivation and Lie derivation have been studied by sev-
eral authors (see [1, 2, 3, 4, 9, 10, 12, 14, 16, 19, 20]) in various directions. One
direction of investigation is to study the conditions under which derivations and
Lie derivations can be completely determined by the action on some subsets of
A. We say that an R-linear map δ : A → A is derivable at a given point c ∈ A

if δ(x)y + xδ(y) = δ(c) for every x, y ∈ A with xy = c and such c is called a
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derivable point of A. This kind of maps were discussed by several authors (see
[6, 15, 22]). Similarly, an R-linear map δ : A → A is said to be a Lie derivable at
a given point c ∈ A if δ([x, y]) = [δ(x), y] + [x, δ(y)] for all x, y ∈ A with xy = c.
Lu and Jing [18] discussed such maps on B(X) where X is a Banach space with
dimX ≥ 3 and B(X) is the algebra of all bounded linear operators acting on X
and proved that if δ is Lie derivable at c = 0 (resp. c = p, where p is a fixed
nontrivial idempotent of B(X)), then δ = d + τ , where d is a derivation of B(X)
and τ : B(X) → CI is a linear map vanishing at every commutator [x, y] with
xy = 0 (resp. xy = p). Ji and Qi [13] investigated this problem on triangular
algebras and obtained that under some mild conditions on A, if L : A → A is an
R-linear map satisfying δ([x, y]) = [δ(x), y] + [x, δ(y)] for any x, y ∈ A with xy = 0
(resp. xy = p, where p is a fixed nontrivial idempotent of A ), then δ = d + τ,
where d is a derivation of A and τ : A → Z(A) (where Z(A) is the center of A )
is an R-linear map vanishing at commutators [x, y] with xy = 0 (resp. xy = p).
Furthermore, in [17] Liu analysed Lie triple derivation on factor von Neumann al-
gebra A of dimension greater than one and found that if a linear map δ : A → A

satisfies δ([[x, y], z]) = [[δ(x), y], z] + [[x, δ(y)], z] + [[x, y], δ(z)] for any x, y, z ∈ A

with xy = 0 (resp. xy = p, where p is a fixed nontrivial projection of A), then there
exist an operator r ∈ A and a linear map f : A→ CI (where CI is the center of A)
vanishing at every second commutator [[x, y], z] with xy = 0 (resp. xy = p) such
that δ(x) = xr − rx+ f(x) for any x ∈ A.

An R-linear map δ : A → A is Lie triple derivable at a given point c ∈ A if
δ([[x, y], z]) = [[δ(x), y], z]+ [[x, δ(y)], z]+ [[x, y], δ(z)] for all x, y, z ∈ A with xy = c.
It is obvious that the condition of being a Lie triple derivable map at some point
is much weaker than the condition of being a Lie triple derivation. So far, there
has been no result on the study of the local actions of Lie triple derivations on
triangular algebras. Motivated by these observations, the purpose of the present
paper is to characterize the additive mapping δn on triangular algebra A satisfying
δn([[x, y], z]) =

∑
i+j+k=n

[[δi(x), δj(y)], δk(z)] for any x, y, z ∈ A with xy = 0 (resp.

xy = p, where p is a fixed nontrivial idempotent).
Throughout the present paper A will denote a triangular algebra which is 2-

torsion free. Define two natural projections πA : A → A and πB : A → B by

πA

(
a m
0 b

)
= a and πB

(
a m
0 b

)
= b. The center of A coincides with

Z(A) =

{(
a 0
0 b

)
a ∈ A, b ∈ B, am = mb for all m ∈M

}
.

Moreover, πA(Z(A)) ⊆ Z(A) and πB(Z(A)) ⊆ Z(B), and there exists a unique
algebra isomorphism η : πB(Z(A)) → πA(Z(A)) such that η(b)m = mb for all
m ∈M.

Let 1A (resp.1B) be the identity of the algebra A (resp.B) and let I =(
1A 0
0 1B

)
be the identity of triangular algebra A. Throughout this paper,
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we shall use the following notations: p1 =

(
1A 0
0 0

)
and p2 = I − p1 =(

0 0
0 1B

)
. Set A11 =

{(
a 0
0 0

)
a ∈ A

}
, A12 =

{(
0 m
0 0

)
m ∈ M

}
and

A22 =

{(
0 0
0 b

)
b ∈ B

}
. Then we can write A = A11 ⊕ A12 ⊕ A22, where A11

is a subalgebra of A isomorphic to A, A22 is a subalgebra of A isomorphic to B

and A12 is a (A11,A22)-bimodule isomorphic to the bimodule M. To simplify the
notation we will use the following convention: a11 ∈ A = A11, a22 ∈ B = A22

and a12 ∈ M = A12. Then each element x ∈ A can be represented in the form
x = a11 + a12 + a22, where a11 ∈ A11, a22 ∈ A22 and a12 ∈ A12.

In what follows, we write aij , it indicates aij ∈ Aij and the corresponding
element in A,B or M. Note that aijakl = 0 if j 6= k.

The proof of the following lemma can be seen in [8, Propositon 3].

Lemma 1.1. Let A be a triangular algebra Tri(A11,A12,A22). If πA11
(Z(A)) =

Z(A11) and πA22
(Z(A)) = Z(A22), then there is a unique algebra isomorphism

η : Z(A22)→ Z(A11) such that η(b)⊕ b ∈ Z(A) for any b ∈ Z(A22).

2. Characterizations of Lie Triple Higher Derivations by Action on Zero
Product

The main result of the present paper states as follows:

Theorem 2.1. Let A = Tri(A11,A12,A22) be a 2-torsion free triangular algebra
consisting of algebras A11 and A22 over a commutative ring R with unity 1A11

and
1A22

respectively and A12 be a faithful (A11,A22)-bimodule, which is faithful as a left
A11-module and also as a right A22-module. Suppose that

(i) πA11(Z(A)) = Z(A11) and πA22(Z(A)) = Z(A22).

(ii) For any a ∈ A11, if [a,A11] ∈ Z(A11), then a ∈ Z(A11) or for any b ∈ A22, if
[b,A22] ∈ Z(A22), then b ∈ Z(A22).

If ∆ = {δn}n∈N is a sequence of R-linear maps δn : A→ A such that δn[[x, y], z] =∑
i+j+k=n

[[δi(x), δj(y)], δk(z)] for all x, y, z ∈ A with xy = 0, then for each n ∈

N, δn = dn + τn; where dn : A → A is R-linear mapping satisfying dn(xy) =∑
i+j=n

di(x)dj(y) for all x, y ∈ A, i.e., D = {dn}n∈N is a higher derivation of A and

τn : A→ Z(A) is an R-linear map vanishing at every second commutator [[x, y], z]
with xy = 0.

The proof of Theorem 2.1 is based on the induction on n. We provide the proof,
for n = 1, through several claims. Indeed, we show that under the given assumptions
of our theorem every Lie triple derivation δ1 = δ on A there exists a derivation d
on A and a linear mapping τ : A → Z(A) vanishing on second commutators such
that δ(x) = d(x) + τ(x) for all x ∈ A.
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Proof of Theorem 2.1. Claim 1. p1δ(p1)p1 + p2δ(p1)p2 ∈ Z(A); δ(a12) =
p1δ(a12)p2 ∈ A12 for any a12 ∈ A12.

Since a12p1 = 0 for any a12 ∈ A12, we have

δ(a12) = δ([[a12, p1], p1])

= [[δ(a12), p1], p1] + [[a12, δ(p1)], p1] + [[a12, p1], δ(p1)]

= δ(a12)p1 − p1δ(a12)p1 − p1δ(a12)p1 + p1δ(a12) + a12δ(p1)p1

− a12δ(p1) + p1δ(p1)a12 − a12δ(p1) + δ(p1)a12.(2.1)

On multiplying the above equality from left by p1 and right by p2, we get

2
(
p1δ(p1)a12 − a12δ(p1)p2

)
= 0.

This implies that p1δ(p1)a12−a12δ(p1)p2 = 0, that is, p1δ(p1)p1a12−a12p2δ(p1)p2 =
0, and hence p1δ(p1)p1 + p2δ(p1)p2 ∈ Z(A). By putting δ(a12) = r11 + r12 + r22,
δ(p1) = p11 + p12 + p22 in (2.1), we get r11 = 0 = r22 and so we have piδ(a12)pi = 0
for i ∈ {1, 2}, δ(a12) = p1δ(a12)p2.

Similarly we can get the following result:

Claim 2. p1δ(p2)p1 + p2δ(p2)p2 ∈ Z(A).

Claim 3. δ(I) = p1δ(I)p1 + p2δ(I)p2 ∈ Z(A).

Since p1(I − p1) = 0, we have

0 = δ([[p1, I − p1], p1])

= [[δ(p1), I − p1], p1] + [[p1, δ(I − p1)], p1] + [[p1, I − p1], δ(p1)]

= [[p1, δ(I)], p1]

= −p1δ(I)p2.

This yields that δ(I) = p1δ(I)p1 + p2δ(I)p2. By Claims 1 & 2, we have δ(I) =
p1δ(p1)p1 + p2δ(p1)p2 + p1δ(p2)p1 + p2δ(p2)p2 ∈ Z(A).

In the sequel, we define

f(x) = δ(x) + δp1δ(p1)p2(x),

where δp1δ(p1)p2(x) is the inner derivation determined by p1δ(p1)p2, that is,

δp1δ(p1)p2(x) = [p1δ(p1)p2, x] = p1δ(p1)p2x− xp1δ(p1)p2 for all x ∈ A.

One can verify that

f([[x, y], z]) = [[f(x), y], z] + [[x, f(y)], z] + [[x, y], f(z)]

for all x, y, z ∈ A with xy = 0. Moreover by Claim 1, we have

f(p1) = δ(p1) + p1δ(p1)p2p1 − p1δ(p1)p2 = p1δ(p1)p1 + p2δ(p1)p2 ∈ Z(A).
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By Claim 3, we get f(I) = δ(I) ∈ Z(A). Consequently f(p2) = f(I)−f(p1) ∈ Z(A).
Clearly for any a12 ∈ A12, δp1δ(p1)p2(a12) = [p1δ(p1)p2, a12] = 0. By Claim 1,

we have f(a12) = δ(a12) ∈ A12, and hence

Claim 4. For any a12 ∈ A12, f(a12) ∈ A12.

Claim 5. f(Aii) ⊆ Aii ⊕ Ajj. There exists an R-linear map τi : Aii → Z(A) such
that f(aii)− τi(aii) ∈ Aii for all aii ∈ Aii, where i, j = 1, 2 and i 6= j.

First we show for i = 1. Since a11p2 = 0 for any a11 ∈ A11 and f(p2) ∈ Z(A), it
follows that

0 = f([[a11, p2], p2])

= [[f(a11), p2], p2] + [[a11, f(p2)], p2] + [[a11, p2], f(p2)]

= f(a11)p2 − p2f(a11)p2 − p2f(a11)p2 + p2f(a11).

Multiplying by p1 from the left we get p1f(a11)p2 = 0 and hence f(a11) ∈ A11⊕A22.
Similarly, we can prove the result for i = 2. Thus, f(Aii) ⊆ Aii ⊕ Ajj .
Now we can write f(a11) = p1f(a11)p1 + p2f(a11)p2. Moreover, since a11a22 = 0,
for any a22 ∈ A22 and x ∈ A, it is easy to check that

0 = f([[a11, a22], x]) = [[f(a11), a22], x] + [[a11, f(a22)], x]

= [[f(a11), a22] + [a11, f(a22)], x].

Multiplying by p2 on both the sides of the above equation, we get

0 = p2[[f(a11), a22] + [a11, f(a22)], x]p2

= [[p2f(a11)p2, p2a22p2] + [p2a11p2, p2f(a22)p2], p2xp2]

= [[p2f(a11)p2, a22], p2xp2].

This implies that [p2f(a11)p2, a22] ∈ Z(A22). Hence by hypothesis (ii), we find that

p2f(a11)p2 ∈ Z(A22).

Define τ1 : A11 → Z(A) such that τ1(a11) = η(p2f(a11)p2)⊕ p2f(a11)p2, where η is
the map defined in Lemma 1.1. Thus, we get

f(a11)− τ1(a11) = p1f(a11)p1 + p2f(a11)p2 − η(p2f(a11)p2)− p2f(a11)p2

= p1f(a11)p1 − η(p2f(a11)p2) ∈ A11.

Since f is R-linear, one can verify that τ1 is R-linear. Similarly, we can define
R-linear map τ2 : A22 → Z(A) by τ2(a22) = p1f(a22)p1 ⊕ η−1(p1f(a22)p1). Then

f(a22)− τ2(a22) = p1f(a22)p1 + p2f(a22)p2 − p1f(a22)p1 − η−1(p1f(a22)p1)

= p2f(a22)p2 − η−1(p1f(a22)p1) ∈ A22.



Characterizations of Lie Triple Higher Derivations 689

Now, for any x = a11 + a12 + a22 ∈ A, we define two R-linear maps τ : A → Z(A)
and d : A→ A by

τ(x) = τ1(a11) + τ2(a22) and d(x) = f(x)− τ(x) respectively.

Then, d(Aij) ⊆ Aij for 1 ≤ i ≤ j ≤ 2 and d(a12) = f(a12).

Claim 6. d is a derivation.

Since f & τ are R-linear and d(x) = f(x)− τ(x), d is R-linear. It remains to show
that d(xy) = d(x)y + xd(y), for all x, y ∈ A. Now, we divide the proof into the
following three steps:

Step 1. Since a12a11 = 0 for any a11 ∈ A11, a12 ∈ A12 and τ(x) is in Z(A), we
have

−d(a11a12) = d([[a11, a12], p1]) = f([[a11, a12], p1])

= [[f(a11), a12], p1] + [[a11, f(a12)], p1] + [[a11, a12], f(p1)]

= [[d(a11) + τ(a11), a12], p1] + [[a11, d(a12)], p1]

= −d(a11)a12 − a11d(a12).

Hence, d(a11a12) = d(a11)a12 + a11d(a12). Similarly, we can get

d(a12a22) = d(a12)a22 + a12d(a22) for all a12 ∈ A12, a22 ∈ A22.

Step 2. Let a11, b11 ∈ A11. For any a12 ∈ A12, we have

d(a11b11a12) = d(a11)b11a12 + a11d(b11a12)

= d(a11)b11a12 + a11d(b11)a12 + a11b11d(a12).(2.2)

On the other hand,

d(a11b11a12) = d(a11b11)a12 + a11b11d(a12).(2.3)

Comparing (2.2) and (2.3), we have(
d(a11b11)− d(a11)b11 − a11d(b11)

)
a12 = 0 for all a12 ∈ A12.

Since A12 is a faithful left A11-module, we get

d(a11b11) = d(a11)b11 + a11d(b11) for all a11, b11 ∈ A11.

Similarly, one can arrive at

d(a22b22) = d(a22)b22 + a22d(b22) for all a22, b22 ∈ A22.
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Step 3. Let x = a11 + a12 + a22, y = b11 + b12 + b22 be in A.
By Steps 1 & 2, we have

d(xy) = d((a11 + a12 + a22)(b11 + b12 + b22))

= d(a11b11) + d(a11b12) + d(a12b22) + d(a22b22)

= d(a11)b11 + a11d(b11) + d(a11)b12 + a11d(b12)

+ d(a12)b22 + a12d(b22) + d(a22)b22 + a22d(b22).

On the other hand, d(Aij) ⊆ Aij for 1 ≤ i ≤ j ≤ 2, we have

d(x)y + xd(y) = d(a11 + a12 + a22)(b11 + b12 + b22)

+ (a11 + a12 + a22)d(b11 + b12 + b22)

= d(a11)b11 + a11d(b11) + d(a11)b12 + a11d(b12)

+ d(a12)b22 + a12d(b22) + d(a22)b22 + a22d(b22).

Hence, we find that d(xy) = d(x)y + xd(y), i.e., d is a derivation.

Claim 7. τ vanishes at second commutator [[x, y], z] with xy = 0 for all x, y, z ∈ A.

Suppose xy = 0. Since τ(x) ∈ Z(A), we have

τ([[x, y], z]) = f([[x, y], z])− d([[x, y], z])

= [[f(x), y], z] + [[x, f(y)], z] + [[x, y], f(z)]− d([[x, y], z])

= [[d(x) + τ(x), y], z] + [[x, d(y) + τ(y)], z] + [[x, y], d(z) + τ(z)]

− d([[x, y], z])

= [[d(x), y], z] + [[x, d(y)], z] + [[x, y], d(z)]− d([[x, y], z])

= 0

for all x, y, z ∈ A. The proof of our theorem for n = 1 is now complete.

Now, suppose that the conclusion holds for all m < n ∈ N. That is, there exist
linear maps dm : A → A and τm : A → Z(A) such that δm(x) = dm(x) + τm(x),
τm([[x, y], z]) = 0 with xy = 0 and dm(xy) =

∑
i+j=m

di(x)dj(y) for all x, y, z ∈ A.

Moreover, δm has the following properties:

p1δm(p1)p1 + p2δm(p1)p2 ∈ Z(A); δm(a12) = p1δm(a12)p2 ∈ A12;

p1δm(p2)p1 + p2δm(p2)p2 ∈ Z(A);

δm(I) = p1δm(I)p1 + p2δm(I)p2 ∈ Z(A).

We will show that δn also satisfies the similar properties. We prove this through
the following claims:

Claim 8. p1δn(p1)p1 + p2δn(p1)p2 ∈ Z(A); δn(a12) = p1δn(a12)p2 ∈ A12 for any
a12 ∈ A12.
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Since a12p1 = 0 for any a12 ∈ A12, by induction hypothesis, we have

δn(a12) = δn([[a12, p1], p1])

= [[δn(a12), p1], p1] + [[a12, δn(p1)], p1] + [[a12, p1], δn(p1)]

+
∑

i+j+k=n
0≤i,j,k<n

[[δi(a12), δj(p1)], δk(p1)]

= δn(a12)p1 − p1δn(a12)p1 − p1δn(a12)p1 + p1δn(a12) + a12δn(p1)p1

− a12δn(p1) + p1δn(p1)a12 − a12δn(p1) + δn(p1)a12.(2.4)

On multiplying the above equality by p1 and p2 from left and right respectively, we
get

2(p1δn(p1)a12 − a12δn(p1)p2) = 0.

This implies that p1δn(p1)a12 − a12δn(p1)p2 = 0, that is, p1δn(p1)p1a12 −
a12p2δn(p1)p2 = 0, and hence p1δn(p1)p1 + p2δn(p1)p2 ∈ Z(A). By putting
δn(a12) = s11 + s12 + s22, δn(p1) = t11 + t12 + t22 in (2.4), we get s11 = 0 = s22 and
so, we have piδn(a12)pi = 0 for i ∈ {1, 2}. Hence, δn(a12) = p1δn(a12)p2.

Since p2a12 = 0 for any a12 ∈ A12. Similarly, we can get the following result.

Claim 9. p1δn(p2)p1 + p2δn(p2)p2 ∈ Z(A).

Claim 10. δn(I) = p1δn(I)p1 + p2δn(I)p2 ∈ Z(A).

Since p1(I − p1) = 0, by using the induction hypothesis, we find that

0 = δn([[p1, I − p1], p1])

= [[δn(p1), I − p1], p1] + [[p1, δn(I − p1)], p1] + [[p1, I − p1], δn(p1)]

+
∑

i+j+k=n
0≤i,j,k<n

[[δi(p1), δj(I − p1)], δk(p1)]

= p1δn(I)p1 − δn(I)p1 − p1δn(I) + p1δn(I)p1.

On multiplying by p1 from the left and by p2 from the right, we have p1δn(I)p2 = 0,
and hence we get that δn(I) = p1δn(I)p1 + p2δn(I)p2. By Claims 8 & 9, we have
δn(I) = p1δn(p1)p1 + p2δn(p1)p2 + p1δn(p2)p1 + p2δn(p2)p2 ∈ Z(A).

In the sequel, we define

fn(x) = δn(x) + δp1δn(p1)p2(x),

where δp1δn(p1)p2(x) is the inner derivation determined by p1δn(p1)p2, that is,

δp1δn(p1)p2(x) = [p1δn(p1)p2, x] = p1δn(p1)p2x− xp1δn(p1)p2 for all x ∈ A.
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One can verify that

fn([[x, y], z]) = [[fn(x), y], z] + [[x, fn(y)], z] + [[x, y], fn(z)]

+
∑

i+j+k=n
0≤i,j,k<n

[[fi(x), fj(y)], fk(z)]

for all x, y, z ∈ A with xy = 0. Moreover by Claim 8, we have

fn(p1) = δn(p1) + p1δn(p1)p2p1 − p1δn(p1)p2 = p1δn(p1)p1 + p2δn(p1)p2 ∈ Z(A).

By Claim 10, we find that fn(I) = δn(I) ∈ Z(A). Consequently fn(p2) = fn(I) −
fn(p1) ∈ Z(A). Clearly for any a12 ∈ A12, δp1δn(p1)p2(a12) = [p1δn(p1)p2, a12] = 0.
By Claim 8, we have fn(a12) = δn(a12) ∈ A12, and hence

Claim 11. For any a12 ∈ A12, fn(a12) ∈ A12.

Claim 12. fn(Aii) ⊆ Aii ⊕ Ajj. There exists an R-linear map τni : Aii → Z(A)
such that fn(aii)− τni(aii) ∈ Aii for all aii ∈ Aii, where i, j = 1, 2 and i 6= j.

First we show the result for i = 1. Since a11p2 = 0 for any a11 ∈ A11 and fn(p2) ∈
Z(A), using induction hypothesis, it follows that

0 = fn([[a11, p2], p2])

= [[fn(a11), p2], p2] + [[a11, fn(p2)], p2] + [[a11, p2], fn(p2)]

+
∑

i+j+k=n
0≤i,j,k<n

[[fi(a11), fj(p2)], fk(p2)]

= fn(a11)p2 − p2fn(a11)p2 − p2fn(a11)p2 + p2fn(a11).

Multiply by p1 from the left to get p1fn(a11)p2 = 0. So, fn(a11) ∈ A11 ⊕ A22.
Similarly we can find the result for i = 2. Thus, fn(Aii) ⊆ Aii ⊕ Ajj .

Now we can write fn(a11) = p1fn(a11)p1 + p2fn(a11)p2. Moreover, since
a11a22 = 0 for any a22 ∈ A22 and x ∈ A, it is easy to observe that

0 = fn([[a11, a22], x]) = [[fn(a11), a22], x] + [[a11, fn(a22)], x] + [[a11, a22], fn(x)]

+
∑

i+j+k=n
0≤i,j,k<n

[[fi(a11), fj(a22)], fk(x)]

= [[fn(a11), a22], x] + [[a11, fn(a22)], x]

= [[fn(a11), a22] + [a11, fn(a22)], x].

Multiplying by p2 on both the sides, we get

0 = p2[[fn(a11), a22] + [a11, fn(a22)], x]p2

= [[p2fn(a11)p2, p2a22p2] + [p2a11p2, p2fn(a22)p2], p2xp2]

= [[p2fn(a11)p2, a22], p2xp2].
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This implies that [p2fn(a11)p2, a22] ∈ Z(A22). Hence by assumption (ii), we get
p2fn(a11)p2 ∈ Z(A22). Define τn1 : A11 → Z(A) by τn1(a11) = η(p2fn(a11)p2) ⊕
p2fn(a11)p2, where η is the map defined in Lemma 1.1. Thus, we get

fn(a11)− τn1(a11) = p1fn(a11)p1 + p2fn(a11)p2 − η(p2fn(a11)p2)− p2fn(a11)p2

= p1fn(a11)p1 − η(p2fn(a11)p2) ∈ A11.

Since fn is R-linear, one can verify that τn1 is R-linear. Similarly, we can define
R-linear map τn2 : A22 → Z(A) by τn2(a22) = p1fn(a22)p1 ⊕ η−1(p1fn(a22)p1).
Then

fn(a22)− τn2(a22) = p1fn(a22)p1 + p2fn(a22)p2 − p1fn(a22)p1 − η−1(p1fn(a22)p1)

= p2fn(a22)p2 − η−1(p1fn(a22)p1) ∈ A22.

Now, for any x = a11 + a12 + a22 ∈ A, we define two R-linear maps τn : A→ Z(A)
and dn : A→ A by

τn(x) = τn1(a11) + τn2(a22) and dn(x) = fn(x)− τn(x) respectively.

Then, dn(Aij) ⊆ Aij for 1 ≤ i ≤ j ≤ 2 and dn(a12) = fn(a12).

Claim 13. dn(xy) =
∑

i+j=n

di(x)dj(y) for all x, y ∈ A.

Since fn & τn are R-linear and dn(x) = fn(x)− τn(x), dn is an R-linear. It remains
to show that dn(xy) =

∑
i+j=n

di(x)dj(y) for all x, y ∈ A.

Now, we divide the proof into the following three steps:

Step 1. Since a12a11 = 0 for any a11 ∈ A11, a12 ∈ A12 and τn(x) is in Z(A), by
induction hypothesis, we have

−dn(a11a12) = fn([[a11, a12], p1])

= [[fn(a11), a12], p1] + [[a11, fn(a12)], p1] + [[a11, a12], fn(p1)]

+
∑

i+j+k=n
0≤i,j,k<n

[[fi(a11), fj(a12)], fk(p1)]

= [[fn(a11), a12], p1] + [[a11, fn(a12)], p1]

+
∑
i+j=n
0<i,j<n

[[fi(a11), fj(a12)], p1]

= [[dn(a11) + τn(a11), a12], p1] + [[a11, dn(a12) + τn(a12)], p1]

+
∑
i+j=n
0<i,j<n

[[dn(a11) + τn(a11), dn(a12) + τn(a12)], p1]

= [[dn(a11), a12], p1] + [[a11, dn(a12)], p1]
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+
∑
i+j=n
0<i,j<n

[[dn(a11), dn(a12)], p1]

= −dn(a11)a12 − a11dn(a12)−
∑
i+j=n
0<i,j<n

di(a11)dj(a12).

Hence, dn(a11a12) =
∑

i+j=n

di(a11)dj(a12). Similarly, we can get

dn(a12a22) =
∑
i+j=n

di(a12)dj(a22) for any a12 ∈ A12, a22 ∈ A22.

Step 2. Let a11, b11 ∈ A11. For any a12 ∈ A12, we have

dn(a11b11a12) =
∑
i+k=n

di(a11b11)dk(a12)

= dn(a11b11)a12 +
∑
i+k=n
k 6=0

di(a11b11)dk(a12)

= dn(a11b11)a12 +
∑

l+t+k=n
k 6=0

dl(a11)dt(b11)dk(a12).(2.5)

On the other hand,

dn(a11b11a12) =
∑
i+j=n

di(a11)dj(b11a12)

=
∑

i+j+k=n

di(a11)dj(b11)dk(a12)

=
∑
i+j=n

di(a11)dj(b11)a12 +
∑

i+j+k=n
k 6=0

di(a11)dj(b11)dk(a12).(2.6)

Comparing (2.5) and (2.6), we have(
dn(a11b11)−

∑
i+j=n

di(a11)dj(b11)
)
a12 = 0.

Since A12 is a faithful left A11-module, we get

dn(a11b11) =
∑
i+j=n

di(a11)dj(b11).

Similarly, we can calculate

dn(a22b22) =
∑
i+j=n

di(a22)dj(b22).
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Step 3. Let x = a11 + a12 + a22, y = b11 + b12 + b22 be in A.
By Steps 1 & 2, we have

dn(xy) =
∑
i+j=n

di(x)dj(y).

Claim 14. τn vanishes at second commutator [[x, y], z] with xy = 0 for all x, y, z ∈
A.

Since xy = 0, we find that

τn([[x, y], z]) = fn([[x, y], z])− dn([[x, y], z])

=
∑

i+j+k=n

([[fi(x), fj(y)], fk(z)])− dn([[x, y], z])

=
∑

i+j+k=n

([[di(x) + τi(x), dj(y) + τj(y)], dk(z) + τk(z)])

− dn([[x, y], z])

=
∑

i+j+k=n

[[di(x), dj(y)], dk(z)]− dn([[x, y], z])

= 0

for all x, y, z ∈ A. The proof is now complete. 2

3. Characterizations of Lie Triple Higher Derivations by Action on Idem-
potent Product

The proof of the following theorem shares the same outline as that of Theorem 2.1
but requires different technique.

Theorem 3.1. Let A = Tri(A11,A12,A22) be a 2-torsion free triangular algebra
consisting of algebras A11 and A22 over a commutative ring R with unity 1A11

and
1A22

respectively and A12 be a faithful (A11,A22)-bimodule. Suppose that

(i) πA11
(Z(A)) = Z(A11) and πA22

(Z(A)) = Z(A22).

(ii) For any a ∈ A11, if [a,A11] ∈ Z(A11), then a ∈ Z(A11) or for any b ∈ A22, if
[b,A22] ∈ Z(A22), then b ∈ Z(A22).

(iii) For every a ∈ A11, there exists an integer t such that t1A11 − a is invertible.

If ∆ = {δn}n∈N is a sequence of R-linear mappings δn : A → A such that
δn[[x, y], z] =

∑
i+j+k=n

[[δi(x), δj(y)], δk(z)] for all x, y, z ∈ A with xy = p, then

for each n ∈ N, δn = dn + τn; where dn : A → A is R-linear mapping satisfying
dn(xy) =

∑
i+j=n

di(x)dj(y) for all x, y ∈ A, i.e., D = {dn}n∈N is a higher derivation
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of A and τn : A→ Z(A) is an R-linear map vanishing at every second commutator
[[x, y], z] with xy = p.

For the proof of Theorem 3.1, we proceed by induction on n. We provide
the proof, for n = 1, through several claims. Indeed, we show that for every Lie
triple derivation δ1 = δ on A there exist a derivation d on A and a linear mapping
τ : A → Z(A) vanishing on second commutators such that δ(x) = d(x) + τ(x) for
all x ∈ A.

Proof of Theorem 3.1. Claim 1. p1δ(p1)p1 + p2δ(p1)p2 ∈ Z(A); δ(a12) =
p1δ(a12)p2 ∈ A12 for any a12 ∈ A12.

Since (p1 + a12)p1 = p1 for any a12 ∈ A12, we have

δ(a12) = δ([[p1 + a12, p1], p1])

= [[δ(p1) + δ(a12), p1], p1]) + [[p1 + a12, δ(p1)], p1] + [[p1 + a12, p1], δ(p1)]

= [[δ(a12), p1], p1] + [[a12, δ(p1)], p1] + [[a12, p1], δ(p1)]

= δ(a12)p1 − p1δ(a12)p1 − p1δ(a12)p1 + p1δ(a12) + a12δ(p1)p1

− a12δ(p1) + p1δ(p1)a12 − a12δ(p1) + δ(p1)a12.(3.1)

On multiplying the above equality by p1 and p2 from the left and the right re-
spectively, we get 2(p1δ(p1)a12 − a12δ(p1)p2) = 0. This gives that p1δ(p1)a12 −
a12δ(p1)p2 = 0, that is, p1δ(p1)p1a12−a12p2δ(p1)p2 = 0. It follows that p1δ(p1)p1 +
p2δ(p1)p2 ∈ Z(A). By putting δ(a12) = r11 + r12 + r22, δ(p1) = p11 + p12 + p22 in
(3.1), we get r11 = 0 = r22 and so we have piδ(a12)pi = 0 for i ∈ {1, 2}. Hence,
δ(a12) = p1δ(a12)p2. Now, define

f(x) = δ(x) + δp1δ(p1)p2(x),

where δp1δ(p1)p2 is the inner derivation determined by p1δ(p1)p2. Then, we have

f(p1) = δ(p1) + p1δ(p1)p2p1 − p1δ(p1)p2 = p1δ(p1)p1 + p2δ(p1)p2 ∈ Z(A)

and f([[x, y], z]) = [[f(x), y], z] + [[x, f(y)], z] + [[x, y], f(z)] for all x, y, z ∈ A with
xy = p. Moreover, for any a12 ∈ A12, by Claim 1, we have

f(a12) = δ(a12) + δp1δ(p1)p2(a12) = δ(a12) ∈ A12.

Claim 2. f(I) = p1f(I)p1 + p2f(I)p2 ∈ Z(A) and f(p2) ∈ Z(A).

Since Ip1 = p1, we have

0 = f([[I, p1], p1])

= [[f(I), p1], p1] + [[I, f(p1)], p1] + [[I, p1], f(p1)]

= f(I)p1 − p1f(I)p1 − p1f(I)p1 + p1f(I).
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This yields that p1(f(I)p1−p1f(I)p1−p1f(I)p1 +p1f(I))p2 = 0 and hence we find
that p1f(I)p2 = 0. So, we get f(I) = p1f(I)p1 + p2f(I)p2. For any a12 ∈ A12, since
(p1 − a12)(I + a12) = p1, we have

−f(a12) = f([[p1 − a12, I + a12], p1])

= [[f(p1)− f(a12), I + a12], p1] + [[p1 − a12, f(I) + f(a12)], p1]

+ [[p1 − a12, I + a12], f(p1)]

= −f(a12)p1 − a12f(p1)p1 − p1f(p1)a12 + p1f(a12)a12 + a12f(p1)

+ p1f(I)p1 + p1f(a12)p1 − a12f(I)p1 − f(I)p1 − p1f(I)

− p1f(a12) + a12f(I) + p1f(I)p1 − p1f(I)a12 + p1f(a12)p1)

− p1f(a12)a12 + a12f(p1)− f(p1)a12.

On multiplying above equality by p1 and p2 from the left and the right respectively,
we get a12f(I)p2 − p1f(I)a12 = 0 and a12p2f(I)p2 − p1f(I)p1a12 = 0.

This implies that f(I) = p1f(I)p1 + p2f(I)p2 ∈ Z(A). Consequently, f(p2) =
f(I)− f(p1) ∈ Z(A).

Claim 3. f(Aii) ⊆ Aii ⊕ Ajj. There exists an R-linear map τi : Aii → Z(A) such
that f(aii)− τi(aii) ∈ Aii for all aii ∈ Aii, where i, j = 1, 2 and i 6= j.

First we show for i = 1. Suppose that a11 is invertible in A11, that is, there exists
an element a−111 ∈ A11 such that a11a

−1
11 = a−111 a11 = p1. From a11a

−1
11 = p1 and

(a−111 + p2)a11 = p1, we have

0 = f([[a−111 , a11], p1])

= [[f(a−111 ), a11], p1] + [[a−111 , f(a11)], p1] + [[a−111 , a11], f(p1)]

and hence by Claim 2,

0 = f([[a−111 + p2, a11], p1])

= [[f(a−111 ) + f(p2), a11], p1] + [[a−111 + p2, f(a11)], p1] + [[a−111 + p2, a11], f(p1)]

= [[f(a−111 ), a11], p1] + [[a−111 , f(a11)], p1] + [[a−111 , a11], f(p1)] + [[p2, f(a11)], p1]

= p2f(a11)p1 + p1f(a11)p2.

On multiplying by p1 from the left and by p2 from the right, we get p1f(a11)p2 = 0,
and hence we find that f(a11) ⊆ A11 ⊕ A22.

If a11 is not invertible in A11, by the hypothesis (iii), there exists an integer
t such that tp1 − a11 is invertible in A11. It follows from the preceding case that
f(tp1 − a11) ∈ A11 ⊕ A22. Therefore, we have

f(a11) = tf(p1)− f(tp1 − a11) ∈ A11 ⊕ A22.

Similarly, we can prove the result for i = 2. Now we can write f(a11) = p1f(a11)p1+
p2f(a11)p2. First suppose that a11 is invertible in A11 with inverse element a−111 .
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Note that a11a
−1
11 = p1 and (a−111 + a22)a11 = p1, we get

0 = f([[a−111 , a11], x])

= [[f(a−111 ), a11], x] + [[a−111 , f(a11)], x] + [[a−111 , a11], f(x)],

and hence

0 = f([[a−111 + a22, a11], x])

= [[f(a−111 ) + f(a22), a11], x] + [[a−111 + a22, f(a11)], x] + [[a−111 + a22, a11], f(x)]

= [[f(a22), a11], x] + [[a22, f(a11)], x]

= [[f(a11), a22] + [a11, f(a22)], x].

Multiplying by p2 on both the sides, we get

0 = p2[[f(a11), a22] + [a11, f(a22)], x]p2

= [[p2f(a11)p2, p2a22p2] + [p2a11p2, p2f(a22)p2], p2xp2]

= [[p2f(a11)p2, a22], p2xp2].

This implies that [p2f(a11)p2, a22] ∈ Z(A22). Hence by hypothesis (ii), we get
p2f(a11)p2 ∈ Z(A22). If a11 is not invertible in A11, by the hypothesis (iii), there
exists an integer t such that (tp1 − a11) is invertible in A11. It follows from the
preceding case that

0 = f([[a22, tp1 − a11], x])

= [[f(a22), tp1 − a11], x] + [[a22, tf(p1)− f(a11)], x] + [[a22, tp1 − a11], f(x)]

= −[[f(a22), a11], x]− [[a22, f(a11)], x].

Multiplying by p2 on both the sides, we get

0 = p2[[f(a11), a22] + [a11, f(a22)], x]p2

= [[p2f(a11)p2, p2a22p2] + [p2a11p2, p2f(a22)p2], p2xp2]

= [[p2f(a11)p2, a22], p2xp2].

This implies that [p2f(a11)p2, a22] ∈ Z(A22). Hence by hypothesis (ii), we get
p2f(a11)p2 ∈ Z(A22).

Define τ1 : A11 → Z(A) by τ1(a11) = η(p2f(a11)p2) ⊕ p2f(a11)p2, where η is the
map defined in Lemma 1.1. Thus, we get

f(a11)− τ1(a11) = p1f(a11)p1 + p2f(a11)p2 − η(p2f(a11)p2)− p2f(a11)p2

= p1f(a11)p1 − η(p2f(a11)p2) ∈ A11.

Since f is an R-linear, one can verify that τ1 is R-linear.
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Similarly, we can define R-linear map τ2 : A22 → Z(A) by τ2(a22) = p1f(a22)p1 ⊕
η−1(p1f(a22)p1). Then

f(a22)− τ2(a22) = p1f(a22)p1 + p2f(a22)p2 − p1f(a22)p1 − η−1(p1f(a22)p1)

= p2f(a22)p2 − η−1(p1f(a22)p1) ∈ A22.

Now, for any x = a11+a12+a22 ∈ A, we define two R-linear mappings τ : A→ Z(A)
and d : A→ A by τ(x) = τ1(a11) + τ2(a22) and d(x) = f(x)− τ(x) respectively.
Then, d(Aij) ⊆ Aij for 1 ≤ i ≤ j ≤ 2 and d(a12) = f(a12).

Claim 4. d is a derivation.

Since f & τ are R-linear and d(x) = f(x) − τ(x), d is an R-linear. It remains to
show that d(xy) = d(x)y + xd(y), for all x, y ∈ A. We divide the proof into the
following three Steps:

Step 1. If a11 is invertible in A11 with inverse element a−111 , then (a−111 +
a−111 a12)a11 = p1 for any a11 ∈ A11, a12 ∈ A12, we have

−d(a12) = d([[a11, a
−1
11 + a−111 a12], p1]) = f([[a11, a

−1
11 + a−111 a12], p1])

= [[f(a11), a−111 + a−111 a12], p1] + [[a11, f(a−111 ) + f(a−111 a12)], p1]

+ [[a11, a
−1
11 + a−111 a12], f(p1)].

Since [[f(a11), a−111 ], p1] + [[a11, f(a−111 )], p1] + [[a11, a
−1
11 ], f(p1)] = 0, we have

−d(a12) = [[f(a11), a−111 a12], p1] + [[a11, f(a−111 a12)], p1]

= [[d(a11), a−111 a12], p1] + [[a11, d(a−111 a12)], p1]

= −d(a11)a−111 a12 − a11d(a−111 a12).

Hence, d(a12) = d(a11)a−111 a12 +a11d(a−111 a12). Replacing a12 by a11a12, we arrive at

d(a11a12) = d(a11)a12 + a11d(a12).

For any a11 ∈ A11, let tp1 − a11 be invertible in A11. Then

d((tp1 − a11)a12) = d(tp1 − a11)a12 + (tp1 − a11)d(a12).

Since d(p1a12) = d(p1)a12 + p1d(a12), we have

d(a11a12) = d(a11)a12 + a11d(a12).

Step 2. Let a12 ∈ A12 and a22 ∈ A22. Observe that (p1+a12)(p1+a22−a12a22) = p1
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and (p1 + a22 − a12a22)(p1 + a12) = p1 + a12. Since f(p1) ∈ Z(A), we have

−d(a12) = d([[p1 + a22 − a12a22, p1 + a12], p1])

= f([[p1 + a22 − a12a22, p1 + a12], p1])

= [[f(p1) + f(a22)− f(a12a22), p1 + a12], p1]

+ [[p1 + a22 − a12a22, f(p1) + f(a12)], p1]

+ [[p1 + a22 − a12a22, p1 + a12], f(p1)]

= [[d(a22)− d(a12a22), p1 + a12], p1] + [[p1 + a22 − a12a22, d(a12)], p1]

= a12d(a22)− d(a12a22)− d(a12) + d(a12)a22.

Thus, d(a12a22) = d(a12)a22 + a12d(a22) for any a12 ∈ A12, a22 ∈ A22.
With the same approach as used in the proof of Claim 6 of Theorem 2.1, we

can get:

Step 3. For any a11, b11 ∈ A11 and a22, b22 ∈ A22,

(i) d(a11b11) = d(a11)b11 + a11d(b11),

(ii) d(a22b22) = d(a22)b22 + a22d(b22).

Step 4. d(xy) = d(x)y + xd(y) for all x, y ∈ A.

Claim 5. τ vanishes at second commutator [[x, y], z] with xy = p for all x, y, z ∈ A.

Since xy = p, we find that

τ([[x, y], z]) = f([[x, y], z])− d([[x, y], z])

= [[f(x), y], z] + [[x, f(y)], z] + [[x, y], f(z)]− d([[x, y], z])

= [[d(x) + τ(x), y], z] + [[x, d(y) + τ(y)], z] + [[x, y], d(z) + τ(z)]

− d([[x, y], z])

= [[d(x), y], z] + [[x, d(y)], z] + [[x, y], d(z)]− d([[x, y], z])

= 0

for all x, y, z ∈ A. The proof for n = 1 is now complete.

Now, suppose that the conclusion holds for all m < n ∈ N. That is, there exist
linear maps dm : A → A and τm : A → Z(A) such that δm(x) = dm(x) + τm(x),
τm([[x, y], z]) = 0 with xy = p and dm(xy) =

∑
i+j=m

di(x)dj(y) for all x, y, z ∈ A.

Moreover, δm has the following properties:

p1δm(p1)p1 + p2δm(p1)p2 ∈ Z(A);

p1δm(p2)p1 + p2δm(p2)p2 ∈ Z(A);

δm(a12) = p1δm(a12)p2 ∈ A12.
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We shall show that δn also satisfies the similar properties. We prove this through
the following claims:

Claim 6. p1δn(p1)p1 + p2δn(p1)p2 ∈ Z(A); δn(a12) = p1δn(a12)p2 ∈ A12 for any
a12 ∈ A12.

Since (p1 + a12)p1 = p1 for any a12 ∈ A12, by induction hypothesis, we have

δn(a12) = δn([[p1 + a12, p1], p1])

= [[δn(p1) + δn(a12), p1], p1]) + [[p1 + a12, δn(p1)], p1]

+ [[p1 + a12, p1], δn(p1)] +
∑

i+j+k=n
0≤i,j,k<n

[[δi(p1 + a12), δj(p1)], δk(p1)]

= [[δn(a12), p1], p1] + [[a12, δn(p1)], p1] + [[a12, p1], δn(p1)]

= δn(a12)p1 − p1δn(a12)p1 − p1δn(a12)p1 + p1δn(a12) + a12δn(p1)p1

− a12δn(p1) + p1δn(p1)a12 − a12δn(p1) + δn(p1)a12.(3.2)

On multiplying by p1 from the left and by p2 from the right in the above equation, we
get 2(p1δn(p1)a12−a12δn(p1)p2) = 0. This gives that p1δn(p1)a12−a12δn(p1)p2 = 0,
that is, p1δn(p1)p1a12−a12p2δn(p1)p2 = 0. It follows that p1δn(p1)p1+p2δn(p1)p2 ∈
Z(A). By putting δn(a12) = s11 + s12 + s22, δn(p1) = t11 + t12 + t22 in (3.2),
we get s11 = 0 = s22 and so, we have piδn(a12)pi = 0 for i ∈ {1, 2}. Hence,
δn(a12) = p1δn(a12)p2.

Now, define

fn(x) = δn(x) + δp1δn(p1)p2(x),

where δp1δn(p1)p2 is the inner derivation determined by p1δn(p1)p2. Then, we have

fn(p1) = δn(p1) + p1δn(p1)p2p1 − p1δn(p1)p2 = p1δn(p1)p1 + p2δn(p1)p2 ∈ Z(A).

and

fn([[x, y], z]) = [[fn(x), y], z] + [[x, fn(y)], z] + [[x, y], fn(z)]

+
∑

i+j+k=n
0≤i,j,k<n

[[fi(x), fj(y)], fk(z)]

for all x, y, z ∈ A with xy = p. Moreover, for any a12 ∈ A12, by Claim 6, we have

fn(a12) = δn(a12) + δp1δn(p1)p2(a12) = δn(a12) ∈ A12.

Claim 7. fn(I) = p1fn(I)p1 + p2fn(I)p2 ∈ Z(A) and fn(p2) ∈ Z(A).
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Since Ip1 = p1, using induction hypothesis, we have

0 = fn([[I, p1], p1])

= [[fn(I), p1], p1] + [[I, fn(p1)], p1] + [[I, p1], fn(p1)]

+
∑

i+j+k=n
0≤i,j,k<n

[[fi(I), fj(p1)], fk(p1)]

= fn(I)p1 − p1fn(I)p1 − p1fn(I)p1 + p1fn(I).

On multiplying by p1 and by p2 from the left and the right respectively, we get
p1fn(I)p2 = 0. Hence, we find that fn(I) = p1fn(I)p1 + p2fn(I)p2. For any a12 ∈
A12, since (p1 − a12)(I + a12) = p1, using induction hypothesis, we have

−fn(a12) = fn([[p1 − a12, I + a12], p1])

= [[fn(p1)− fn(a12), I + a12], p1] + [[p1 − a12, fn(I) + fn(a12)], p1]

+ [[p1 − a12, I + a12], fn(p1)]

+
∑

i+j+k=n
0≤i,j,k<n

[[fi(p1 − a12), fj(I + a12)], fk(p1)]

= −fn(a12)p1 − a12fn(p1)p1 − p1fn(p1)a12 + p1fn(a12)a12 + a12fn(p1)

+ p1fn(I)p1 + p1fn(a12)p1 − a12fn(I)p1 − f(I)p1 − p1fn(I)

− p1fn(a12) + a12fn(I) + p1fn(I)p1 − p1fn(I)a12 + p1fn(a12)p1

− p1fn(a12)a12 + a12fn(p1)− fn(p1)a12.

Further, multiply by p1 from the left and by p2 from the right, we find that

a12fn(I)p2 − p1fn(I)a12 = 0

a12p2fn(I)p2 − p1fn(I)p1a12 = 0.

This implies that fn(I) = p1fn(I)p1 + p2fn(I)p2 ∈ Z(A). Consequently, fn(p2) =
fn(I)− fn(p1) ∈ Z(A).

Claim 8. fn(Aii) ⊆ Aii⊕Ajj. There exists an R-linear map τni : Aii → Z(A) such
that fn(aii)− τni(aii) ∈ Aii for all aii ∈ Aii, where i, j = 1, 2 and i 6= j.

First we show the result for i = 1. Suppose that a11 is invertible in A11, that
is, there exists an element a−111 ∈ A11 such that a11a

−1
11 = a−111 a11 = p1. From

a11a
−1
11 = p1 and (a−111 + p2)a11 = p1, by induction hypothesis, we have

0 = fn([[a−111 , a11], p1])

= [[fn(a−111 ), a11], p1] + [[a−111 , fn(a11)], p1] + [[a−111 , a11], fn(p1)]

+
∑

i+j+k=n
0≤i,j,k<n

[[fi(a
−1
11 ), fj(a11)], fk(p1)],
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and hence by Claim 7,

0 = fn([[a−111 + p2, a11], p1])

= [[fn(a−111 ) + fn(p2), a11], p1] + [[a−111 + p2, fn(a11)], p1]

+ [[a−111 + p2, a11], fn(p1)] +
∑

i+j+k=n
0≤i,j,k<n

[[fi(a
−1
11 + p2), fj(a11)], fk(p1)]

= [[p2, fn(a11)], p1] +
∑

i+j+k=n
0≤i,j,k<n

[[fi(p2), fj(a11)], fk(p1)]

= p2fn(a11)p1 + p1fn(a11)p2.

This yields that p1(p2fn(a11)p1 + p1fn(a11)p2)p2 = 0 and hence we find that
p1fn(a11)p2 = 0. From this we get fn(a11) ⊆ A11 ⊕ A22.

On the other hand if a11 is not invertible in A11, by the hypothesis (iii), there
exists an integer t such that tp1 − a11 is invertible in A11. It follows from the
preceding case that fn(tp1 − a11) ∈ A11 ⊕ A22. Therefore, we have fn(a11) =
tfn(p1)− fn(tp1 − a11) ∈ A11 ⊕ A22. Similarly, we can prove that for i = 2.

Now we can write fn(a11) = p1fn(a11)p1 + p2fn(a11)p2. First, suppose that
a11 is invertible in A11 with inverse element a−111 . Note that a11a

−1
11 = p1 and

(a−111 + a22)a11 = p1, using induction hypothesis, we get

0 = fn([[a−111 , a11], x])

= [[fn(a−111 ), a11], x] + [[a−111 , fn(a11)], x] + [[a−111 , a11], fn(x)]

+
∑

i+j+k=n
0≤i,j,k<n

[[fi(a
−1
11 ), fj(a11)], fk(x)],

and hence

0 = fn([[a−111 + a22, a11], x])

= [[fn(a−111 ) + fn(a22), a11], x] + [[a−111 + a22, fn(a11)], x]

+ [[a−111 + a22, a11], fn(x)] +
∑

i+j+k=n
0≤i,j,k<n

[[fi(a
−1
11 + a22), fj(a11)], fk(x)]

= [[fn(a22), a11], x] + [[a22, fn(a11)], x]

= [[fn(a11), a22] + [a11, fn(a22)], x].

Multiplying by p2 on both the sides, we get

0 = p2[[fn(a11), a22] + [a11, fn(a22)], x]p2

= [[p2fn(a11)p2, p2a22p2] + [p2a11p2, p2fn(a22)p2], p2xp2]

= [[p2fn(a11)p2, a22], p2xp2].
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This implies that [p2fn(a11)p2, a22] ∈ Z(A22). Hence by hypothesis (ii), we get
p2fn(a11)p2 ∈ Z(A22).

If a11 is not invertible in A11, by the hypothesis (iii), there exists an integer t
such that (tp1 − a11) is invertible in A11. It follows from the preceding case that

0 = fn([[a22, tp1 − a11], x])

= [[fn(a22), tp1 − a11], x] + [[a22, tfn(p1)− fn(a11)], x] + [[a22, tp1 − a11], fn(x)]

+
∑

i+j+k=n
0≤i,j,k<n

[[fi(a22), fj(tp1 − a11)], fk(x)]

= −[[fn(a22), a11], x]− [[a22, fn(a11)], x] +
∑

i+j+k=n
0≤i,j,k<n

[[fi(a22), fj(tp1 − a11)], fk(x)]

= [[fn(a22), a11], x] + [[a22, fn(a11)], x]

= [[fn(a11), a22] + [a11, fn(a22)], x].

Multiplying by p2 on both the sides, we get

0 = p2[[fn(a11), a22] + [a11, fn(a22)], x]p2

= [[p2fn(a11)p2, p2a22p2] + [p2a11p2, p2fn(a22)p2], p2xp2]

= [[p2fn(a11)p2, a22], p2xp2].

This implies that [p2fn(a11)p2, a22] ∈ Z(A22). Hence by hypothesis (ii), we get
p2fn(a11)p2 ∈ Z(A22).
Define τn1 : A11 → Z(A) by τn1(a11) = η(p2fn(a11)p2) ⊕ p2fn(a11)p2, where η is
the map defined in Lemma 1.1. Thus, we get

fn(a11)− τn1(a11) = p1fn(a11)p1 + p2fn(a11)p2 − η(p2fn(a11)p2)− p2fn(a11)p2

= p1fn(a11)p1 − η(p2fn(a11)p2) ∈ A11.

Since fn is R-linear, one can verify that τn1 is R-linear. Similarly, we can define
R-linear map τn2 : A22 → Z(A) by τn2(a22) = p1fn(a22)p1 ⊕ η−1(p1fn(a22)p1).
Then

fn(a22)− τn2(a22) = p1fn(a22)p1 + p2fn(a22)p2 − p1fn(a22)p1 − η−1(p1fn(a22)p1)

= p2fn(a22)p2 − η−1(p1fn(a22)p1) ∈ A22.

Now, for any x = a11 + a12 + a22 ∈ A, we define two R-linear maps τn : A→ Z(A)
and dn : A → A by τn(x) = τn1(a11) + τn2(a22) and dn(x) = fn(x) − τn(x).
Then, dn(Aij) ⊆ Aij for 1 ≤ i ≤ j ≤ 2 and dn(a12) = fn(a12).

Claim 9. dn(xy) =
∑

i+j=n

di(x)dj(y) for all x, y ∈ A.

Since fn & τn are R-linear and dn(x) = fn(x)− τn(x), dn is an R-linear. It remains
to show that dn(xy) =

∑
i+j=n

di(x)dj(y), for all x, y ∈ A.
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We divide the proof into the following three Steps:

Step 1. If a11 is invertible in A11 with inverse element a−111 , then (a−111 +
a−111 a12)a11 = p1 for any a11 ∈ A11, a12 ∈ A12, we have

−dn(a12) = dn([[a11, a
−1
11 + a−111 a12], p1]) = fn([[a11, a

−1
11 + a−111 a12], p1])

= [[fn(a11), a−111 + a−111 a12], p1] + [[a11, fn(a−111 ) + fn(a−111 a12)], p1]

+ [[a11, a
−1
11 + a−111 a12], fn(p1)]

+
∑

i+j+k=n
0≤i,j,k<n

[[fi(a11), fj(a
−1
11 + a−111 a12)], fk(p1)].

Since,

0 = [[fn(a11), a−111 ], p1] + [[a11, fn(a−111 )], p1] + [[a11, a
−1
11 ], fn(p1)]

+
∑

i+j+k=n
0≤i,j,k<n

[[fi(a11), fj(a
−1
11 )], fk(p1)],

we find that

−dn(a12) = [[fn(a11), a−111 a12], p1] + [[a11, fn(a−111 a12)], p1]

+ [[a11, a
−1
11 a12], fn(p1)] +

∑
i+j+k=n
0≤i,j,k<n

[[fi(a11), fj(a
−1
11 a12)], fk(p1)]

= [[fn(a11), a−111 a12], p1] + [[a11, fn(a−111 a12)], p1]

+
∑
i+j=n
0<i,j<n

[[fi(a11), fj(a
−1
11 a12)], p1]

= [[dn(a11) + τn(a11), a−111 a12], p1]

+ [[a11, dn(a−111 a12) + τn(a−111 a12)], p1]

+
∑
i+j=n
0<i,j<n

[[di(a11) + τi(a11), dj(a
−1
11 a12) + τj(a

−1
11 a12)], p1]

= [[dn(a11), a−111 a12], p1] + [[a11, dn(a−111 a12)], p1]

+
∑
i+j=n
0<i,j<n

[[di(a11), dj(a
−1
11 a12)], p1]

= [[dn(a11), a−111 a12], p1] + [[a11, dn(a−111 a12)], p1]

−
∑
i+j=n
0<i,j<n

di(a11)dj(a
−1
11 a12)
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= −dn(a11)a−111 a12 − a11dn(a−111 a12)−
∑
i+j=n
0<i,j<n

di(a11)dj(a
−1
11 a12)

= −
∑
i+j=n

di(a11)dj(a
−1
11 a12).

Hence, dn(a12) =
∑

i+j=n

di(a11)dj(a
−1
11 a12). Replacing a12 by a11a12, we arrive at

dn(a11a12) =
∑
i+j=n

di(a11)dj(a12).

For any a11 ∈ A11, let tp1 − a11 be invertible in A11. Then

dn((tp1 − a11)a12) =
∑
i+j=n

di(tp1 − a11)dj(a12).

Since dn(p1a12) =
∑

i+j=n

di(p1)dj(a12), we have dn(a11a12) =
∑

i+j=n

di(a11)dj(a12).

Step 2. Let a12 ∈ A12 and a22 ∈ A22. Observe that (p1+a12)(p1+a22−a12a22) = p1
and (p1 + a22 − a12a22)(p1 + a12) = p1 + a12. Since fn(p1) ∈ Z(A), we have

−dn(a12) = dn([[p1 + a22 − a12a22, p1 + a12], p1])

= fn([[p1 + a22 − a12a22, p1 + a12], p1])

= [[fn(p1) + fn(a22)− fn(a12a22), p1 + a12], p1]

+ [[p1 + a22 − a12a22, fn(p1) + fn(a12)], p1]

+ [[p1 + a22 − a12a22, p1 + a12], fn(p1)]

+
∑

i+j+k=n
0≤i,j,k<n

[[fi(p1 + a22 − a12a22), fj(p1 + a12)], fk(p1)]

= [[fn(a22)− fn(a12a22), p1 + a12], p1]

+ [[p1 + a22 − a12a22, fn(a12)], p1]

+
∑

i+j+k=n
0≤i,j,k<n

[[fi(p1 + a22 − a12a22), fj(p1 + a12)], fk(p1)]

= [[dn(a22)− dn(a12a22), p1 + a12], p1]

+ [[p1 + a22 − a12a22, dn(a12)], p1]

+
∑

i+j+k=n
0≤i,j,k<n

[[di(p1 + a22 − a12a22), dj(p1 + a12)], dk(p1)]
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= [[dn(a22)− dn(a12a22), p1 + a12], p1]

+ [[p1 + a22 − a12a22, dn(a12)], p1] +
∑
i+j=n
0<i,j<n

di(a12)dj(a22)

= −dn(a12a22) + a12dn(a22)− dn(a12)

+ dn(a12)a22 +
∑
i+j=n
0<i,j<n

di(a12)dj(a22).

Thus, dn(a12a22) =
∑

i+j=n

di(a12)dj(a22) for any a12 ∈ A12, a22 ∈ A22.

Using the same approach as used in the proof of Claim 13 of Theorem 2.1, we
find that

Step 3. For any a11, b11 ∈ A11 and a22, b22 ∈ A22,

(i) dn(a11b11) =
∑

i+j=n

di(a11)dj(b11),

(ii) dn(a22b22) =
∑

i+j=n

di(a22)dj(b22).

Step 4. dn(xy) =
∑

i+j=n

di(x)dj(y) for all x, y ∈ A.

Claim 10. τn vanishes at second commutator [[x, y], z] with xy = p for all x, y, z ∈
A.

Since xy = p, we find that

τn([[x, y], z]) = fn([[x, y], z])− dn([[x, y], z])

=
∑

i+j+k=n

([[fi(x), fj(y)], fk(z)])− dn([[x, y], z])

=
∑

i+j+k=n

([[di(x) + τi(x), dj(y) + τj(y)], dk(z) + τk(z)])

− dn([[x, y], z])

=
∑

i+j+k=n

[[di(x), dj(y)], dk(z)]− dn([[x, y], z])

= 0

for all x, y, z ∈ A. The proof is now complete.

4. Applications

As an application of Theorems 2.1 & 3.1, we consider the nest algebra case. We
know that every nontrivial nest algebra is a triangular algebra (see [11]), which
satisfies the conditions of Theorems 2.1 & 3.1 and hence we have the following
results.
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Theorem 4.1. Let N be an arbitrary nontrivial nest on a Hilbert space T of di-
mension greater than 2, AlgN be the associated nest algebra. If ∆ = {δn}n∈N
is a sequence of R-linear maps δn : AlgN → AlgN satisfying δn[[x, y], z] =∑
i+j+k=n

[[δi(x), δj(y)], δk(z)] for all x, y, z ∈ AlgN with xy = 0. Then for each

n ∈ N, δn(x) = hn(x) + τn(x) for all x ∈ AlgN; where H = {hn}n∈N is an inner
higher derivation on AlgN and τn : AlgN → FI (where FI is the center of AlgN)
is an R-linear map vanishing at the second commutator [[x, y], z] with xy = 0.

Proof. Since N is nontrivial nest, the associated nest algebra is a triangular al-
gebra which satisfies the conditions of Theorem 2.1. Then there exists a higher
derivation D = {dn}n∈N of AlgN and a linear map τn : AlgN → FI vanish-
ing at the second commutator [[x, y], z] with xy = 0 such that for each n ∈ N,
δn(x) = dn(x) + τn(x) for all x ∈ AlgN. Since every higher derivation on AlgN
is inner (see [10, 21]), there is an inner higher derivation H = {hn}n∈N on AlgN.
This implies that for each n ∈ N δn(x) = hn(x) + τn(x) for all x ∈ AlgN. 2

Theorem 4.2. Let N be a nontrivial nest on a Hilbert space T of dimension greater
than 2, AlgN be the associated nest algebra and p be a nontrivial projection in N.
If ∆ = {δn}n∈N is a sequence of R-linear maps δn : AlgN → AlgN satisfying
δn[[x, y], z] =

∑
i+j+k=n

[[δi(x), δj(y)], δk(z)] for all x, y, z ∈ AlgN with xy = p. Then

for each n ∈ N, δn(x) = hn(x) + τn(x) for all x ∈ AlgN; where H = {hn}n∈N is
an inner higher derivation on AlgN and τn : AlgN → FI (where FI is the center
of AlgN) is an R-linear map vanishing at the second commutator [[x, y], z] with
xy = p.

Proof. Let A11 = pAlgNp, A22 = (I − p)AlgN(I − p) and A12 = pAlgN(I − p).
Then A11 and A22 are unital algebras with unit element p and I − p respectively
and AlgN = Tri(A11,A12,A22) is a triangular algebra. Also AlgN satisfies the
conditions of Theorem 3.1, then there exists a higher derivation D = {dn}n∈N of
AlgN and a linear map τn : AlgN → FI vanishing at the second commutator
[[x, y], z] with xy = p such that for each n ∈ N, δn(x) = dn(x) + τn(x) for all x ∈
AlgN. Since every higher derivation on AlgN is inner (see [10, 21]) there exists an
inner higher derivation H = {hn}n∈N on AlgN such that for each n ∈ N, δn(x) =
hn(x) + τn(x) for all x ∈ AlgN. 2

If Hilbert space T is finite dimensional, then nest algebras are upper block
triangular matrices algebras [7].

Theorem 4.3. Let Bn(R) be a proper block upper triangular matrix algebra over a
commutative ring R. If ∆ = {δn}n∈N is a sequence of R-linear maps δn : Bn(R)→
Bn(R) satisfying δn([[x, y], z]) =

∑
i+j+k=n

[[δi(x), δj(y)], δk(z)] for all x, y, z ∈ Bn(R)

with xy = 0 (resp. xy = p, p be a nontrivial projection in Bn(R)). Then for each
n ∈ N, δn(x) = hn(x) + τn(x) for all x ∈ Bn(R); where H = {hn}n∈N is an inner
higher derivation on Bn(R) and τn : Bn(R)→ FI (where FI is the center of Bn(R))
is an R-linear map vanishing at the second commutator [[x, y], z] with xy = 0 (resp.
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xy = p).

Proof. It can be easily seen that conditions of Theorems 2.1 & 3.1 hold for block
upper triangular matrix algebra and from [21, Proposition 2.6] all higher derivations
of Bn(R) are inner. Hence δn is the sum of an inner higher derivation hn : Bn(R)→
Bn(R) and a functional τn : Bn(R)→ FI that vanishes on all second commutators
of Bn(R). 2

Acknowledgements. The authors are indebted to the referee for his/her helpful
comments and suggestions.
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