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Abstract. The concepts of an Amitsur ring and a hereditary Amitsur ring, which were

introduced and studied by S. Tumurbat in a recent paper, are generalized. For a positive

integer n, a ring A is said to be an n-Amitsur ring if γ(A[Xn]) = (γ(A[Xn]) ∩ A)[Xn] for

all radicals γ, where A[Xn] is the polynomial ring over A in n commuting indeterminates.

If a ring A satisfies the above equation for all hereditary radicals γ, then A is said to be

a hereditary n-Amitsur ring. Characterizations and examples of these rings are provided.

Moreover, new radicals associated with n-Amitsur rings are introduced and studied. One

of these is a special radical and its semisimple class is polynomially extensible.

1. Introduction

Throughout this paper, all rings considered are associative and do not necessar-
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ily have an identity element. All classes of rings contain the one element ring and
are closed under isomorphisms. Let us recall that a class γ of rings is called a radical
class (in the sense of Kurosh and Amitsur) if γ is closed under homomorphisms, is
closed under extensions (if I is an ideal of a ring A and both I and A/I are in γ,
then A is in γ) and has the inductive property (if I1 ⊆ I2 ⊆ . . . ⊆ Ii ⊆ . . . is an
ascending chain of ideals of a ring A and if each Ii is in γ, then ∪Ii is also in γ).
The unique largest ideal of a ring A belonging to γ, denoted by γ(A), is called the
γ-radical of A. In what follows, a radical class will be shortly called a radical. For
a given radical γ, the semisimple class of γ, denoted by Sγ, is the class of all rings
A with γ(A) = 0. If σ is a class of rings, then the smallest radical containing σ is
called the lower radical determined by σ and is denoted by L(σ). The lower hered-
itary radical determined by σ, denoted by Lh(σ), is the smallest hereditary radical
containing σ. A class α of rings is said to be hereditary if α is closed under ideals.
If α is a hereditary class of rings, then U(α) denotes the upper radical determined
by α, that is, the class of all rings that have no nonzero homomorphic image in α.
To denote that I is an ideal of a ring A, we write I � A. An ideal I of a ring A is
said to be essential in A, denoted by I �• A, if I ∩ J 6= 0 for any nonzero ideal J
of A. A class α of rings is said to be essentially closed if I �• A and I ∈ α implies
that A ∈ α. A hereditary class of prime rings that is essentially closed is called a
special class. A radical γ is called special if it is the upper radical determined by
a special class of rings. For other undefined terms and radical-theoretic properties
used throughout this paper, we refer the reader to [4] and [14].

Let us recall that a radical γ is said to have the Amitsur property if

γ(A[x]) = (γ(A[x]) ∩A)[x]

for all rings A. Radicals with this property have been studied in several papers,
for example, in [1, 6, 7, 11, 12, 13]. Throughout this paper, n denotes an arbitrary
but fixed natural number n. Let Xn denote a set of n commuting indeterminates
x1, . . . , xn. We introduce the following definition.

Definition 1.1. A ring A is said to be an n-Amitsur ring if

γ(A[Xn]) = (γ (A[Xn]) ∩A)[Xn]

for all radicals γ.

Definition 1.2. A ring A is called a hereditary n-Amitsur ring if

γ(A[Xn]) = (γ (A[Xn]) ∩A)[Xn]

for all hereditary radicals γ.

Clearly, every n-Amitsur ring is a hereditary n-Amitsur ring. If n = 1, then a 1-
Amitsur ring and a hereditary 1-Amitsur ring are just the concepts of Amitsur ring
and hereditary Amitsur ring, respectively, which were introduced and investigated
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by S. Tumurbat in [9]. The purpose of this paper is to obtain generalizations of
those results.

Let γ be a radical. IfA ∈ Sγ and γ (A[Xn]) 6= 0, thenA is not an n-Amitsur ring.
Indeed, suppose that A is an n-Amitsur ring. Then 0 6= γ(A[Xn]) = (γ(A[Xn]) ∩
A)[Xn] and hence 0 6= γ (A[Xn]) ∩ A ∈ γ, which contradicts the assumption that
A ∈ Sγ. Hence, for example, Zp (the ring of integers modulo p, where p is a prime
number) is not an n-Amitsur ring. In fact, for γ = U({Zp}), it is clear that Zp ∈ Sγ
and we claim that Zp[Xn] /∈ Sγ. Since γ = U({Zp}) is a special radical,

γ(Zp[Xn]) = ∩{I � Zp[Xn] : Zp[Xn]/I ∼= Zp}

and so we can see that, for xi ∈ Xn, 0 6= xpi − xi ∈ γ (Zp[Xn]), since every a ∈ Zp
satisfies the polynomial equation xpi − xi = 0 (see [2, 6]). Therefore the natural
question arises as to whether n-Amitsur rings exist.

2. n-Amitsur Rings and Radicals

In this section, we show that n-Amitsur rings do indeed exist and we also provide
some characterizations. Moreover, we shall introduce new radicals, associated with
these rings, and study some of their properties.

We shall require the following known result:

Proposition 2.1.([6, 13]) If γ is a radical, then (γ(A[Xn]) ∩ A)[Xn] ⊆ γ(A[Xn])
for any ring A.

For any radical γ, consider the radical class

γn = {A : A is a ring with A [Xn] ∈ γ} ,

defined by Tumurbat and Wisbauer in [13]. It is clear that, for any ring A and any
radical γ, γn (A) = γ (A) if and only if γ (A) [Xn] ∈ γ for every radical γ.

Using the method of proof of ([4] , Proposition 4.9.18), we may show the fol-
lowing:

Proposition 2.2. If γ is a hereditary radical, then γn (A) = γ (A [Xn])∩A for any
ring A.

Proposition 2.3. If A is an n-Amitsur (respectively, hereditary n-Amitsur) ring,
then

γn (A) = γ (A [Xn]) ∩A ⊆ γ (A) ,

for any radical (respectively, hereditary radical) γ.

Proof. We prove the result for the case when A is an n-Amitsur ring. Let γ be
an arbitrary radical. We have γ (A [Xn]) = (γ (A [Xn]) ∩A) [Xn]. Notice that since
γn (A) ∈ γn, it is clear that γn (A) [Xn] ∈ γ. Therefore γn (A) [Xn] ⊆ γ (A [Xn]).
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Now

γ ((A/γn (A)) [Xn]) ∼= γ (A [Xn] /γn (A) [Xn])

= γ (A [Xn]) /γn (A) [Xn]

= (γ (A [Xn]) ∩A) [Xn] /γn (A) [Xn]
∼= ((γ (A [Xn]) ∩A) /γn (A)) [Xn]

Hence ((γ (A [Xn]) ∩A) /γn (A)) [Xn] ∈ γ and so (γ (A [Xn]) ∩A) /γn (A) ∈ γn.
Thus (γ (A [Xn]) ∩A) /γn (A) ⊆ γn (A/γn (A)) = 0, whence γ (A [Xn])∩A = γn (A).

The assertion γ (A [Xn]) ∩ A ⊆ γ (A) now follows, taking into account that
γn ⊆ γ. 2

Let I be an ideal of a ring A. If there exists a radical (respectively, hereditary
radical) γ such that I = γ(A), then I is called a radical ideal (respectively, h-radical
ideal) of A. From Proposition 2.3, it is clear that if A is an n-Amitsur (respectively,
hereditary n-Amitsur) ring, then γ (A [Xn]) ∩ A is a radical ideal (respectively, h-
radical ideal) of A, for any radical (respectively, hereditary radical) γ.

Proposition 2.4. Let A be an n-Amitsur (respectively, hereditary n-Amitsur) ring.
Then A ∈ Sγn implies that A [Xn] ∈ Sγ, for any radical (respectively, hereditary
radical) γ.

Proof. Assume that A is an n-Amitsur ring and let γ be an arbitrary radical
Suppose that A ∈ Sγn. Since

(γ (A [Xn]) ∩A) [Xn] = γ (A [Xn]) ∈ γ,

it is clear that γ (A [Xn]) ∩ A ∈ γn. Thus γ (A [Xn]) ∩ A ⊆ γn (A) = 0. Hence
γ (A [Xn]) = 0; that is A [Xn] ∈ Sγ. The proof is similar when A is a hereditary
n-Amitsur ring. 2

In what follows, for a radical γ and a ring A, we put

Aγ = γ(A[Xn]) ∩A,

Aγ = A/Aγ ,

γ(A[Xn]) = γ(A[Xn])/Aγ [Xn] .

Lemma 2.5. γ(Aγ [Xn]) ∩Aγ = 0, for any ring A and any radical γ.

Proof. Suppose that there exists a radical γ and a ring A such that γ((Aγ [Xn]) ∩
Aγ 6= 0. Then there is a nonzero element a ∈ γ(Aγ [Xn]) ∩ Aγ . Hence there exists
0 6= a /∈ A ∩ γ(A[Xn], which is a pre-image of a. By Proposition 2.1, ((γ(A[Xn]) ∩
A)[Xn] ⊆ γ(A[Xn]). Taking into account that radical classes are closed under
extensions, we have γ(Aγ [Xn]) ∼= γ(A[Xn]). Consequently, a ∈ γ(A[Xn] and a ∈ A,
which is a contradiction. 2
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Theorem 2.6. For a ring A, the following conditions are equivalent:

(i) A is a n-Amitsur ring;

(ii) γ(Aγ [Xn]) = 0 for every radical γ;

(iii) γ0(Aγ0 [Xn]) = 0, where γ0 = L(H) and H is any ideal of A[Xn];

(iv) every radical ideal I of A[Xn] is a polynomial ring;

(v) γ (A[Xn]) = γn (A) [Xn] for every radical γ.

Proof. (ii) implies (i). If γ is a radical, then we know that (γ(A[Xn]) ∩ A)[Xn] ⊆
γ(A[Xn]. Since radical classes are closed under extensions, γ(Aγ [Xn]) ∼= γ(A[Xn]).

Hence, if γ(Aγ [Xn]) = 0, then γ(A[Xn]) = 0 and so γ(A[Xn]) ⊆ (γ(A[Xn])∩A)[Xn].
Therefore A is a n-Amitsur ring.

(iii) implies (ii). Let γ be an arbitrary radical. Since γ(A[Xn]) � A[Xn], we
take H = γ(A[Xn]) and γ0 = L(H). Then γ0(A[Xn]) = H = γ(A[Xn]). Thus, if
(iii) holds, then γ(Aγ [Xn]) = 0.

(i) implies (iii). This is clear.
(i) implies (iv). Let I be radical ideal of A[Xn]. Then I = γ(A[Xn]) for some

radical γ. If A is a n-Amitsur ring, then γ(A[Xn]) = (γ(A[Xn]) ∩ A)[Xn] and so I
is a polynomial ring.

(iv) implies (i). Let γ be a radical such that I = γ(A[Xn]), that is, I is a
radical ideal of the ring A[Xn]. Then, by condition (iv), I is a polynomial ring.
Hence there exists I ′ � A such that I ′[Xn] = γ(A[Xn]). Now it is easy to see that
I ′ = A ∩ γ(A[Xn]).

(i) implies (v). If A is an n-Amitsur ring, then (v) follows from Proposition 2.3.
(v) implies (i). Suppose that γ (A[Xn]) = γn (A) [Xn] for any radical γ. Then

γn (A) [Xn] = (γn (A) ∩A) [Xn]

⊆ (γn (A) [Xn] ∩A) [Xn] = (γ (A[Xn]) ∩A) [Xn].

Taking into account Proposition 2.1, we have the desired result. 2

The next theorem may be proved in a similar way to the theorem above, and
so we omit its proof. Recall that a subring I of a ring A is called an accessible
subring of A if there exists a finite sequence I0, I1, ..., In of subrings such that
I = I0 � I1 � . . .� In = A.

Theorem 2.7. For a ring A, the following statements are equivalent:

(i) A is a hereditary n-Amitsur ring;

(ii) γ(Aγ [Xn]) = 0 for every hereditary radical γ;

(iii) γ1(Aγ1 [Xn]) = 0, where γ1 = Lh(H) and H is any accessible subring of
A[Xn];
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(iv) every h-radical ideal I of A[Xn] is a polynomial ring.

(v) γ (A[Xn]) = γn (A) [Xn] for every hereditary radical γ.

Proposition 2.8. If F is a finite field, then F is not a hereditary n-Amitsur ring,
for every natural number n.

Proof. If F is a finite field, then γ = U ({F}) is a special radical. Now xp
m

n −
xn ∈ γ(F [Xn]), where pm is the number of elements in F . Therefore γ(F [Xn]) *
(γ(F [Xn]) ∩ F )[Xn] and hence F is not a hereditary n-Amitsur ring. 2

Following the reasoning in the proof of Proposition 2.6 of [13], we may prove
the next result.

Lemma 2.9. Let Y be any subset of Xn of cardinality 1, where n > 1. If A is a
ring such that A[Xn\Y ] is an Amitsur ring (respectively, hereditary Amitsur ring),
then γ(A[Xn]) 6= 0 implies that A ∩ γ(A[Xn]) 6= 0, for any radical (respectively,
hereditary radical) γ.

Proof. Let γ be an arbitray radical and A be a ring such that A[Xn\Y ] is a an
Amitsur ring. Assume that γ(A[Xn]) 6= 0. Since A[Xn\Y ] is an Amitsur ring,

γ(A[Xn]) = γ((A[Xn\Y ])[Y ]) = (A[Xn\Y ] ∩ γ(A[Xn]))[Y ].

For any 0 6= a ∈ γ(A[Xn]), there exist elements xi1 , ..., xin(a)
∈ Xn and aα1

,...,αn(a)
∈

A such that

a =
∑

a
α1
,...,αn(a)

xα1
i1
...x

αn(a)

in(a)

where, for each xij there exists an exponent αj 6= 0 such that

a
α1
,...,αn(a)

xα1
i1
...x

αn(a)

in(a)
6= 0

or a ∈ A. The number of nonzero summands of a is called the length of a and is
denoted by `(a).

Suppose that A ∩ γ(A[Xn]) = 0. For each 0 6= a ∈ γ(A[Xn]), `(a) > 1. Choose
0 6= a ∈ γ(A[Xn]) with `(a) minimal. If a depends on only one indeterminate,
then the coefficients of a belong to A ∩ γ(A[Xn]) = 0 and so a = 0, which is a
contradiction. Therefore a depends on at least two indeterminates, that is, n(a) > 2.
We can write

0 6= a =
∑

fαn(a)
(xi1 ...xin(a)−1

)x
αn(a)

in(a)
∈ (A[Xn\Y ] ∩ γ(A[Xn]))[Y ],

where Y =
{
xin(a)

}
and fαn(a)

= fαn(a)
(xi1 ...xin(a)−1

) ∈ A[Xn\Y ] ∩ γ(A[Xn]). If
`(fαn(a)

) = `(a), take fαn(a)
instead of a. The number of indeterminates in fαn(a)

is less than the number of indeterminates in a. Continuing with this procedure, we
can find 0 6= fk ∈ γ(A[Xn]) such that either fk ∈ A[Y ]) for some subset Y of Xn

of cardinality 1, or `(fk) < `(a). In the first case, fk ∈ A ∩ γ(A[Xn]) = 0, which
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is a contradiction. The second case contradicts the minimality of `(a). Thus we
conclude that A ∩ γ(A[Xn]) 6= 0, as desired. 2

Let n be a natural number. We recall that a class α of rings said to be n-
polynomially extensible if A[Xn] ∈ α for all A ∈ α. If n = 1, the class α of rings is
said to be polynomially extensible. It is clear that if a class α of rings is polynomially
extensible, then it is n-polynomially extensible, for any natural number n.

For any ring A, let A0 be the zero-ring on the additive group of A, that is, A0 has
the additive group of A and multiplication defined by ab = 0 for all a, b ∈ A. Clearly,
the class of all zero-rings is n-polynomially extensible, for any natural number n.
Moreover, in [9], it was proved that every zero-ring is an Amitsur ring. We are now
in a position to prove the following proposition.

Proposition 2.10. For any ring A, the ring A0 is an n-Amitsur ring.

Proof. Let γ be an arbitrary radical. From Proposition 2.1,

(A0 ∩ γ(A0[Xn]))[Xn] ⊆ γ(A0[Xn]).

Suppose that
γ(A0[Xn]) " (A0 ∩ γ(A0[Xn]))[Xn].

Then γ(A0
γ [Xn]) 6= 0. Hence, by the previous lemma, A0 ∩ γ(A0[Xn] 6= 0, which is

a contradiction with Lemma 2.5. 2

The Baer radical class is the upper radical determined by the class of all prime
rings and also coincides with the upper radical determined by the class of all
semiprime rings. Rings belonging to the Baer radical class are called Baer radi-
cal rings. It is well known that the Baer radical class is n-polynomially extensible,
for any natural number n. In addition, it was proved in [9] that every Baer radical
ring is a hereditary Amitsur ring. Hence we have:

Proposition 2.11. If A is a Baer radical ring, then A is a hereditary n-Amitsur
ring.

Proof. Aγ is a Baer radical ring and therefore Aγ [Xn] is also a Baer radical ring.
If γ(Aγ [Xn]) 6= 0, then, by the previous lemma, Aγ ∩ γ(Aγ [Xn]) 6= 0. This is a
contradiction with Lemma 2.5. Thus γ(Aγ [Xn]) = 0. Hence, by Theorem 2.7, A is
a hereditary n-Amitsur ring. 2

The following lemma is required in the proof of the next proposition.

Lemma 2.12.([8]) Let A be an infinite integral domain, and let S = A[xi : i ∈ Λ]be
the polynomial ring over A with |Λ| commuting indeterminates. For every radical
class γ, A ∩ γ(S) = 0 if and only if γ(S) = 0.

Proposition 2.13. If A is an infinite integral domain whose every proper homo-
morphic image is a Baer radical ring, then A is a hereditary n-Amitsur ring.

Proof. Let A be an infinite integral domain without proper prime homomorphic
images. Let γ be a hereditary radical and suppose that γ(A[Xn]) 6= 0. By the
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lemma above, A ∩ γ(A[Xn]) 6= 0. We also know that (A ∩ γ(A[Xn]))[Xn] ⊆
γ(A[Xn]). If γ(A[Xn]) * (A ∩ γ(A[Xn]))[Xn], then we have 0 6= γ(A[Xn])
= γ(A[Xn])/(A ∩ γ(A[Xn]))[Xn] � A[Xn]/(A ∩ γ(A[Xn]))[Xn]. By assumption,
Aγ is a Baer radical ring and hence Aγ [Xn] and γ(A[Xn]) ∼= γ

(
Aγ [Xn]

)
are Baer

radical rings. Then γ(A[Xn]) is not a semiprime ring and so it has a nonzero ideal

I such that I
2

= 0. Let Iγ be the ideal of Aγ generated by the coefficients of

g (x1, ..., xn) ∈ I. Therefore

0 6= I ⊆ Iγ [Xn] ∩ γ
(
Aγ [Xn]

)
= γ

(
Iγ [Xn]

)
,

since γ is hereditary Then, from the lemma above, Iγ ∩ γ(Iγ [Xn]) 6= 0, where
Iγ ∩ γ(Iγ [Xn]) ⊆ Aγ ∩ γ(Aγ [Xn]). However, from Lemma 2.5, we have Aγ ∩
γ(Aγ [Xn]) = 0, which is a contradiction. 2

Example 2.14.([4])

(i) The ring

W =

{
2x

2y + 1
: x and y are integers and (2x, 2y + 1) = 1

}
is an infinite integral domain and every proper homomorphic image of W is
a Baer radical ring. Therefore W is a hereditary n-Amitsur ring.

(ii) Taking into account Lemma 2.12, it can be easily seen that any infinite field
is an n-Amitsur ring.

Next, we introduce the following classes of rings, which rely on the concept of
n-Amitsur ring:

Tn = {A : A is a ring whose nonzero prime homomorphic images are not
hereditary n-Amitsur rings},

Tns = {A : A is a ring whose prime homomorphic images have no nonzero ideals
that are hereditary n-Amitsur rings},

It is easy to see that each of the classes Tn and Tns is homomorphically closed
and that Tns ⊆ Tn. Moreover, we will show that they are radical classes. For this
purpose, we require the following class of rings:

τn = {A : A is a prime and hereditary n-Amitsur ring},

Lemma 2.15. τn is a hereditary class of rings.

Proof. Suppose that 0 6= I E A ∈ τn. Let γ be a hereditary radical. Since A is
a prime ring, A[Xn] is also a prime ring. So, if γ(A[Xn]) 6= 0, then γ(I[Xn]) =
I[Xn]∩γ(A[Xn]) 6= 0. Moreover, all the coefficients of any g(x1, . . . , xn) ∈ γ(I[Xn])
are in I and also in γ(I[Xn]) and therefore γ(I[Xn]) ⊆ (I ∩ γ(I[Xn])) [Xn]. Taking
into account Proposition 2.1, γ(I[Xn]) = (I ∩ γ(I[Xn])) [Xn], as desired. 2

Let us recall that the essential cover of a class α of rings, denoted by εα, is the
class of all rings that contain an essential ideal in α.
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Lemma 2.16. The essential cover ετn is a special class of rings.

Proof. Since τn is a hereditary class of prime rings, ετn is also a hereditary class of
prime rings. It remains to show that the class ετn is essentially closed. Let A�• B
and A ∈ ετn. Then there exists a nonzero ideal I of A such that I C• A and I ∈ τn.
Since I is a prime ring, A is a prime ring and hence B is also a prime ring, because
the class of prime rings is essentially closed. Let IB be the ideal of B generated by
I. By Andrunakievich’s Lemma, I3

B ⊆ I, where 0 6= I3
B �• B. By Lemma 2.15, I3

B

is a hereditary n-Amitsur ring. Thus B ∈ ετn. 2

Corollary 2.17. ετn = {A : A is a prime ring having a nonzero ideal I that is a
hereditary n-Amitsur ring}.

Theorem 2.18. Tn is a radical class, and Tns is a special radical class.

Proof. We claim that U(τn) = Tn. If A ∈ Tn, then every nonzero prime homomor-
phic image of A is not a hereditary n-Amitsur ring, that is, A ∈ U(τn). Therefore
Tn ⊆ U(τn). Let A ∈ U(τn)\Tn. Since A /∈ Tn, there is a nonzero prime homo-
morphic image A of A which is a hereditary n-Amitsur ring. Hence A ∈ τn ∩U(τn)
and so A = 0, which is a contradiction. Therefore U(τn) ⊆ Tn. Lemma 2.15, now
yields that U(τn) = Tn is a radical class.

Next, we show that U(ετn) = Tns. Suppose that U(ετn) * Tns. Then there
exists 0 6= A ∈ U(ετn) such that A /∈ Tns. Since A /∈ Tns, there is a homomorphic
image A of A such that 0 6= A ∈ ετn. Therefore 0 /∈ A ∈ ετn ∩U(ετn) = 0, which is
a contradiction. Hence U(ετn) ⊆ Tns. Now suppose that Tns * U(ετn). Then there
exists 0 6= A ∈ Tns such that A /∈ U(ετn). Since A /∈ U(ετn), there is a nonzero
prime homomorphic image A of A such that A ∈ ετn. Since Tns is homomorphically
closed, A ∈ Tns. On the other hand, every homomorphic image of A is not in ετn,
which is a contradiction. Thus Tns ⊆ U(ετn). By Lemma 2.16, ετn is a special class
of rings and so Tns = U(ετn) is a special radical. 2

Theorem 2.19. The semisimple class STns is n-polynomially extensible.

Proof. Let A ∈ STns. By Theorem 2.18, Tns is a special radical. Therefore there
exist ideals Hi (i ∈ Λ) of A such that, for each i ∈ Λ, Bi = A/Hi ∈ ετn and
∩i∈ΛHi = 0. We claim that Tns(A[Xn]) ⊆ Hi[Xn], for any i ∈ Λ. If Tns(A[Xn]) 6⊆
Hi[Xn] for some i ∈ Λ, then

Tns((A/Hi)[Xn]) ∼= Tns

(
A[Xn]

Hi[Xn]

)
6= 0.

Thus 0 6= Tns(Bi[Xn]). Since ετn is a special class of rings, A/Hi is a prime ring.
On the other hand, there exists an ideal Ji of Bi such that 0 6= Ji �

• Bi and Ji is
a prime hereditary n-Amitsur ring. We have, for any i ∈ Λ,

0 6= Tns(Ji[Xn]) = (Ji ∩ Tns(Ji[Xn])[Xn] ∈ Tns.

Thus 0 6= Ji∩Tns(Ji[Xn]) ∈ Tns, where Ji∩Tns(Ji[Xn])�Bi. But Ji∩Tns(Ji[Xn]) ⊆
Tns(Bi) = 0, which is contradiction. Thus Bi[Xn] ∈ STns and consequently
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Tns(A[Xn] ⊆ Hi[Xn], for any i ∈ Λ. If 0 6= Tns(A[Xn]), then there exists
0 6= g(Xn) ∈ Tns(A[Xn]). But all the coefficients ai of g(Xn) are in ∩i∈ΛHi = 0.
Hence ai = 0 and so Tn(A[Xn]) = 0, that is, A[Xn] ∈ STns. 2

We recall from [5] that a radical γ is called small if γ∨γ′ 6= Ass for each proper
radical γ′, where Ass denotes the class of all associative rings. Dually, a nonzero
radical γ is large if γ ∩ γ′ 6= 0 for each proper radical γ′.

Let Ls denote the collection of all strongly hereditary (that is, closed under
subrings) and large radicals, and let L denote the collection of all radicals γ such
that γ ∩ γα 6= 0 for every γα ∈ Ls. In [10], S. Tumurbat et al. proved that L is a
complete sublattice in the lattice of all radicals. Now we have the following:

Proposition 2.20. Each of the radicals Tn and Tns belongs to L.

Proof. The radical Tns contains all fields Zp and all rings Z0
p of prime order p (where

Z0
p denotes the ring with the additive group of Zp and with multiplication defined

by ab = 0 for all a, b ∈ Zp). In [10], it was shown that every nonzero strongly
hereditary radical contains a prime field or a simple zero ring of prime order. Hence
Tns ∩ γα 6= 0 for every γα ∈ Ls. Thus Tns ∈ L and also Tn ∈ L. 2

Definition 2.21. We call a radical γ an n-bad radical if, for every prime ring A ∈ γ,
there exists a hereditary radical γA such that γA (A [Xn]) 6= (γA (A [Xn]) ∩A) [Xn].

In what follows, Lb and Lsb denote, respectively, the class of all n-bad radicals
and the class of all special radicals that are n-bad radicals.

Proposition 2.22. The classes Lb and Lsb satisfy the following conditions:

(i) If γi ∈ Lb for each i ∈ Λ, then ∩
i∈Λ

γi ∈ Lb;

(ii) If γi ∈ Lsb for each i ∈ Λ, then ∩
i∈Λ

γi ∈ Lsb.

Proof. (i) Let A be a prime ring in ∩
i∈Λ

γi. For each i ∈ Λ, there exists a hereditary

radical (γi)A such that

(γi)A (A [Xn]) 6= ((γi)A (A [Xn]) ∩A) [Xn] .

Then we may choose any one of (γi)A, i ∈ Λ.
Statement (ii) may be proved in a similar way. 2

Theorem 2.23. Both Lb and Lsb are complete sublattices in the lattice of all
radicals.

Proof. We have γi ⊆ Tn for each n-bad radical γi. Therefore L (∪γi) ⊆ Tn and
L (∪γi) ∈ Lb. By Proposition 2.22, ∩γi ∈ Lb. Thus Lb is a complete sublattice in
the lattice of all radicals. The proof that Lsb is a complete sublattice in the lattice
of all radicals is similar. 2

In [3], B.J. Gardner, J. Krempa and R. Wiegandt posed the question as to
whether there exists a (hereditary) radical γ with polynomially extensible semisim-
ple class Sγ such that γ does not have the Amitsur property. If T1s does not have
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the Amitsur property, then we have a positive answer to this question.
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[1] N. Divinsky and A. Suliński, Kurosh radicals of rings with operators, Canad. J. Math.,
17(1965), 278–280.

[2] H. France-Jackson, T. Khulan and S. Tumurbat, On α-like radicals of rings, Bull.
Aust. Math. Soc., 88(2)(2013), 331–339.

[3] B. J. Gardner, J. Krempa and R. Wiegandt, Open problems in radical theory, Algebra
Discrete Math., (3)(2007), 15–17.

[4] B. J. Gardner and R. Wiegandt, Radical theory of rings, Marcel Dekker, New York,
2004.

[5] B. J. Gardner and L. Zhian, Small and large radical classes, Comm. Algebra,
20(1992), 2533–2551.

[6] J. Krempa, On radical properties of polynomial rings, Bull. Acad. Polon. Sci. Ser. Sci.
Math. Astronom. Phys., 20(1972), 545–548.

[7] N. V. Loi and R. Wiegandt, On the Amitsur property of radicals, Algebra Discrete
Math., (3)(2006), 92–100.

[8] N. R. McConnell and T. Stokes, Radical ideals of radically simple rings and their ex-
tensions, Theory of radicals, 185–196, Colloquia Mathematica Societatis Janos Bolyai
61, North-Holland, Amsterdam, 1993.

[9] S. Tumurbat, On Amitsur rings, Quaest. Math., 42(5)(2019), 665–672.

[10] S. Tumurbat, D. Dayantsolmon and T. Khulan, Notes on chain rings and radicals,
Kyungpook Math. J., 58(2018), 473–479.

[11] S. Tumurbat and R. Wiegandt, Radicals of polynomial rings, Soochow J. Math.,
29(4)(2003), 425–434.

[12] S. Tumurbat and R. Wiegandt. On radicals with Amitsur property, Comm. Algebra,
32(3)(2004), 1219–1227.

[13] S. Tumurbat and R. Wisbauer, Radicals with the α-Amitsur property, J. Algebra
Appl., 7(3)(2008), 347–361.

[14] R. Wiegandt, Radical and semisimple classes of rings, Queen’s Papers in Pure and
Applied Mathematics 37, Queen’s University, Kingston Ontario, 1974.


