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ABSTRACT. Let Z, be the ring of integers modulo n and let Z,[X] be either Z,[X] or
Zn[X]. Let T'(Z,»[X]) be the zero-divisor graph of Z,[X]. In this paper, we study some
properties of I'(Z,,[X]). More precisely, we completely characterize the diameter and the
girth of I'(Z,,[X]). We also calculate the chromatic number of I'(Z,[X]).

1. Introduction

1.1. Preliminaries

In this subsection, we review some concepts from basic graph theory. Let G be
a (undirected) graph. Recall that G is connected if there exists a path between any
two distinct vertices of G. The graph G is complete if any two distinct vertices are
adjacent. The complete graph with n vertices is denoted by K,,. The graph G is a
complete bipartite graph if G can be partitioned into two disjoint nonempty vertex
sets A and B such that two distinct vertices are adjacent if and only if they are
in distinct vertex sets. For vertices a and b in G, d(a,b) denotes the length of the
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shortest path from a to b. If there is no such path, then d(a,b) is defined to be oo;
and d(a,a) is defined to be zero. The diameter of G, denoted by diam(G), is the
supremum of {d(a,b) |a and b are vertices of G}. The girth of G, denoted by g(G),
is defined as the length of the shortest cycle in G. If G contains no cycles, then g(Q)
is defined to be co. A subgraph H of G is an induced subgraph of G if two vertices
of H are adjacent in H if and only if they are adjacent in G. The chromatic number
of G is the minimum number of colors needed to color the vertices of G so that no
two adjacent vertices share the same color, and is denoted by x(G). A cliqgue C in
G is a subset of the vertex set of G such that the induced subgraph of G by C' is
a complete graph. A mazimal clique in G is a clique that cannot be extended by
including one more adjacent vertex. The cligue number of G, denoted by cl(G), is
the greatest integer n > 1 such that K,, C G. If K,, C G for all integers n > 1,
then cl(G) is defined to be co. It is easy to see that x(G) > cl(G).

1.2. The Zero-divisor Graph of a Commutative Ring

Let R be a commutative ring with identity and Z(R) the set of nonzero zero-
divisors of R. The zero-divisor graph of R, denoted by I'(R), is the simple graph
with the vertex set Z(R), and for distinct a,b € Z(R), a and b are adjacent if and
only if ab = 0. Clearly, I'(R) is the null graph if and only if R is an integral domain.

In [6], Beck first introduced the concept of the zero-divisor graph of a commu-
tative ring and in [3], Anderson and Naseer continued to study. In [3] and [6], all
elements of R are vertices of the graph and the authors were mainly interested in
graph coloring. In [2], Anderson and Livingston gave the present definition of I'(R)
in order to emphasize the study of the interplay between graph-theoretic properties
of I'(R) and ring-theoretic properties of R. It was shown that T'(R) is connected
with diam(T'(R)) < 3 [2, Theorem 2.3]. In [8, (1.4)], Mulay proved that g(T'(R)) < 4.
In [5], the authors studied the zero-divisor graphs of polynomial rings and power
series rings.

For more on the zero-divisor graph of a commutative ring, the readers can refer
to a survey article [1].

Let Z,, be the ring of integers modulo n and let Z,[X] (resp., Z,[X]) be the
polynomial ring (resp., power series ring) over Z,. Let Z,[X] be either Z,[X] or
Z,[X]. In [9], the authors studied the zero-divisor graph of Z,,. In fact, they com-
pletely characterized the diameter, the girth and the chromatic number of I'(Z,).
The purpose of this paper is to study some properties of the zero-divisor graph of
Z,[X]. If n is a prime number, then Z, [X] has no zero-divisors; so I'(Z,[X]) is the
null graph. Hence in this paper, we only consider the case that n is a composite.
In Section 2, we completely characterize the diameter and the girth of I'(Z,[X]).
In Section 3, we calculate the chromatic number of I'(Z,,[X]). Note that all figures
are drawn via website http://graphonline.ru/en/.
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2. The Diameter and the Girth of I'(Z, [ X])

In order to give the complete characterization of the diameter of I'(Z,[X]), we
need the following lemma.

Lemma 2.1.([4, Chapter 1, Exercise 2(iii)] and [7, Theorem 5]) Let R be a com-
mutative ring with identity. Then the following assertions hold.

(1) If f € Z(R[X]), then there exists a nonzero element r € R such that rf = 0.

(2) If R is a Noetherian ring and f € Z(R[X]), then there exists a nonzero
element r € R such that rf = 0.

Let R be a commutative ring with identity. For a nonempty subset C of R, let
C[X] be the subset of R[X] consisting of elements whose coefficients belong to C.
For an element f =)",.,a; X" € R[X], the order of f is defined to be the smallest
nonnegative integer n such that a, # 0 and is denoted by ord(f).

Theorem 2.2. The following statements hold.
(1) diam(T'(Z,[X])) = 1 if (and only if) n = p? for some prime p.

(2) diam(T'(Z,[X])) = 2 if (and only if) n = p" for some prime p and some
integer r > 3, or n. = pq for some distinct primes p and q.

(3) diam(I'(Z,[X])) = 3 if (and only if) n = pgr for some distinct primes p,q
and some integer v > 2.

Proof. Before proving the result, we note that for all integers n > 2, Z, is a
Noetherian ring.

(1) Suppose that n = p" for some prime p and some integer r > 3. Let f and g
be two distinct elements of Z(Z,2[X]). Then by Lemma 2.1, f and g are elements
of Z(Z,2)[X]. Note that Z(Zy2) = {p,2p,...,(p — 1)p}; so the product of any two
elements of Z(Z,z2) is zero. Hence fg = 0 in Z,2[X]. This indicates that I'(Z,2[X])
is a complete graph. Thus diam(I'(Z,2[X])) = 1.

(2) Suppose that n = p", where p is a prime and r is an integer greater than or
equal to 3. Let f and g be two distinct elements of Z(Z,~[X]). Then by Lemma 2.1,
[ and g are elements of Z(Z,-)[X]. Note that Z(Z,) = {p,2p,..., ("' — 1)p}; so
forall a € Z(Zyr), ap"~' = 0in Z,-. Hence f—p"~!—gis a path in I'(Z,[X]), which
implies that diam(I'(Z,-[X])) < 2. Note that pX is not adjacent to (p"~! — 1)pX
in T'(Z,-[X]). Thus diam(I'(Z,-[X])) = 2.

Suppose that n = pg, where p and q are distinct primes. Let A = {p,2p, ..., (¢—
1)p} and B = {¢,2q,...,(p — 1)q}. Then AN B = 0 and Z(Z,,) = AU B. Let
f € Z(Zpy|X]). Then by Lemma 2.1, there exists an element r € Z(Z,,) such that
rf = 0. Note that for any a;,as € A and by,bs € B, ajas # 0 and biby # 0
in Zy,g; so if r € A (vesp., r € B), then f € B[X] (resp., f € A[X]). Therefore
Z(Zpe| X]) = A[IX]UB[X]. Note that A[X]NB[X] = 0 and for any a € Aand b € B,
ab = 0. Hence I'(Z,,,[ X]) is a complete bipartite graph. Thus diam(I'(Z,,[X])) = 2.
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(3) Suppose that n = pgr, where p,q are distinct primes and 7 is an integer
greater than or equal to 2. Then pX,qX € Z(Zpe[X]) with (pX)(¢gX) # 0 in
Zpgr| X]; so diam(T'(Zpgr[X])) > 2. Suppose to the contrary that there exists an
element f € Z(Zpq-[X]) such that pX — f — ¢X is a path in I'(Z,4.[X]). Let a
be the coefficient of X°"4(/) in f. Then ap = 0 = aq in Z,q; s0 a is a multiple of
pgr. Therefore a = 0 in Z,q,. This is absurd. Hence diam(I'(Z,q-[X])) > 3. Thus
diam(I'(Zpgr[X])) = 3 [2, Theorem 2.3]. O

eee oo o e eee oo

diam(T(Zy[X])) =1 diam(T(Zs[X])) = 2 diam(I'(Zy5[X])) =2 diam(T'(Z12[X])) = 3

Figure 1: The diameter of some zero-divisor graphs

We next study the girth of I'(Z,,[X]).

Proposition 2.3. Ifp is a prime and r > 2 is an integer, then g(I'(Z, [ X])) = 3.

Proof. It suffices to note that p" ! —p"~1X —p"~1 X2 — p"~! is a cycle of length 3
in I(Zy [ X]). O

Proposition 2.4. If p and g are distinct primes, then g(I'(Z,q[X])) = 4.

Proof. Note that by the proof of Theorem 2.2(2), I'(Zp4[X]) is a complete bipartite
graph; so I'(Z,4[X]) does not have a cycle of length 3. Let A and B be as in the
proof of Theorem 2.2(2). Then for any f € A[X]and g € B[X], pX—g—f—qX—pX
is a cycle of length 4 in I'(Z,,[X]). Thus g(I'(Z,,[X])) = 4. O

Lemma 2.5. If g(T'(Z,[X])) = 3, then g(T'(Zmn[X])) = 3 for all integers m > 1.

Proof. Let m be any positive integer. Note that if f —g—h — f is a cycle of length
3in I'(Z,[X]), then mf —mg—mh—mf is a cycle of length 3 in I'(Z,,,,,[X]). Thus

Lemma 2.6. Let p and g be distinct primes. Then g(I'(Zpe-[X])) = 3 for any
prime 7.

Proof. If r = p, then p — pg — pgX — p is a cycle of length 3 in I'(Z,2,[X]). If
r = ¢, then ¢ — pg — pgX — q is a cycle of length 3 in I'(Z,,2[X]). Suppose that
r # pand r # ¢q. Then pg — qr — pr — pq is a cycle of length 3 in I'(Zpq,[X]). Thus
g(T'(Zpyr[X])) = 3 for any prime r. O
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Proposition 2.7. Let p and g be distinct primes. Then g(I'(Zpqr[X])) = 3 for any
nteger r > 2.

Proof. Note that r is a multiple of some prime. Thus the result follows directly
from Lemmas 2.5 and 2.6. O

By Propositions 2.3, 2.4 and 2.7, we can completely characterize the girth of
I(Z,[X]) as follows:

Theorem 2.8. The following statements hold.
(1) gT(Z,[X])) = 3 if (and only if) each of the following conditions holds.
(a)
(b)
(I(

(2) gT(Z,[X])) =4 if (and only if) n = pq for some distinct primes p and q.

n =p" for some prime p and integer r > 2.
n = pqr for some distinct primes p,q and integer r > 2.

g([(Zays[X])) =3 g(l(Z1s[X])) =3 g(l'(Z6[X])) =4

Figure 2: The girth of some zero-divisor graphs

3. The Chromatic Number of I'(Z, [X])

In this section, we calculate the chromatic number of I'(Z,, [ X]). Clearly, if there
exists a clique in a graph, then the chromatic number of the graph is greater than
or equal to the size of the clique. Hence in order to find the chromatic number of
I'(Z,[X]), we investigate to find a (maximal) clique of I'(Z,,[X]).

Lemma 3.1. If r > 2 is an integer, n = p1---p, for distinct primes p1,...,Dr,
and C = {pﬂ |i=1,...,r}, then C is a mazimal clique of T(Z,[X]).

Proof. Note that the product of any two distinct members of C' is zero in Z,, [ X]; so
C'is a clique. Suppose to the contrary that there exists an element f € Z(Z,[X])\C
such that ¢f = 0 in Z,[X] for all ¢ € C. Let a be the coefficient of X°r(/) in f.

Then ca = 0 in Z,; so a is a multiple of p; for all : = 1,...,r. Hence a is a multiple
of n, i.e., a = 0 in Z,. This is a contradiction. Thus C' is a maximal clique of
I(Zn[X]). o

Proposition 3.2. If r > 2 is an integer and n = py1---p,. for distinct primes
Dis- -, Pr, then x(T(Zn[X])) = r.
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Proof. Let C = {i |i=1,...,7}. Then by Lemma 3.1, C' is a maximal clique of
['(Z,|X]). For each i = 1,...,r, let i be the color of . Clearly, Z(Z,[X]) \ C
is a nonempty set. For each f € Z(Z,[X])\ C, let Sy = {c € C|f and c are
not adjacent}. Then by Lemma 3.1, C' is a maximal clique of I'(Z,[X]); so Sy is
a nonempty set. Hence we can find the smallest integer k € {1,...,7} such that
oo € Sy. In this case, we color f with k.

To complete the proof, it remains to check that any two vertices of T'(Z,[X])
with the same color cannot be adjacent. Fix an element k& € {1,...,7} and let f and
g be distinct vertices of I'(Z,[X]) with the same color k. Since C is a clique, f and
g cannot belong to C' at the same time. Suppose that f € C and g € Z(Z,[X])\ C.
Then f = 1)%; so by the coloring of g, f and g are not adjacent. Suppose that

fi9 € Z(Z,[X]) \ C and write f = 3,5, a; X" and g = > iso0bi X% Then by the
coloring of f and g, f and g are not adjacent to ﬂ; 0] —f # 0 and —g #0
in Z,[X]. Let a be the smallest nonnegative mteger such that p—aa # 0 in Zy,
and let S be the smallest nonnegative integer such that - bg # 0 in Z,. Then
ag, .. ,0a-1,b0,...,bg_1 are divided by p, and a,, bg are not divided by pg; so the
coefﬁcient of Xa“a in fg is not divided by py. Therefore fg # 0 in Z,[X]. Hence
f and g are not adjacent.
Thus we conclude that x(T'(Z,[X])) = r. O

We denote the set of nonnegative integers by Npy.

Lemma 3.3. If n is a multiple of the square of a prime, then T'(Z,[X]) has an
infinite clique.
Proof. Suppose that n is a multiple of the square of a prime.

Case 1. n = pf‘“ ---p2er for distinct primes pi,...,p,. and positive integers

ai,...,ar. In this case, let C = {\/nX™|m € Np}. Then the product of any
two elements of C' is zero in Z,[X]; so C is an infinite clique of I'(Z,,[X]).
Case 2. n = pza1 . p%“rqzb1+1 - @b+ for distinct primes p1,...,pr, q1,-- -, s
and nonnegative integers aq,...,a.,b1,...,bs, not all zero. In this case, let k =
pot gttt bt and let € = {kX™|m € Ny}. Then the product of any
two elements of C' is zero in Z,[X]; so C is an infinite clique of I'(Z,[X]).

By Cases 1 and 2, I'(Z,,[X]) has an infinite clique. O

Proposition 3.4. Let n be a multiple of the square of a prime. Then

X(P(Zn[X])) = o0

Proof. By Lemma 3.3, I'(Z,,[ X]) has an infinite clique; so cl(I'(Z,[X])) = oo. Thus

X(D(Zn[X])) = oo. D
By Propositions 3.2 and 3.4, we obtain the main result in this section.

Theorem 3.5. The following statements hold.

(1) x(T(Z,[X])) = r if (and only if) n = p1---p, for some distinct primes
P1s.yPr-
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(2) x(T'(Z,[X])) = o< if (and only if) n is a multiple of the square of some prime.
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X(T(Zs0[X])) = 3 X(T(Zs6[X])) = o0 X(D(Z2[X])) = o0

Figure 3: The coloring of some zero-divisor graphs
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