KYUNGPOOK Math. J. 60(2020), 723-729
https://doi.org/10.5666/KMJ.2020.60.4.723
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

The Zero-divisor Graph of $\mathbb{Z}_{n}[X]$

Min Ji Park
Department of Mathematics, College of Life Science and Nano Technology, Hannam University, Daejeon 34430, Republic of Korea
e-mail: mjpark5764@gmail.com

Eun Sup Kim
Department of Mathematics, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
e-mail: eskim@knu.ac.kr
Jung Wook Lim*
Department of Mathematics, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
e-mail: jwlim@knu.ac.kr
Abstract. Let \mathbb{Z}_{n} be the ring of integers modulo n and let $\mathbb{Z}_{n}[X]$ be either $\mathbb{Z}_{n}[X]$ or $\mathbb{Z}_{n} \llbracket X \rrbracket$. Let $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$ be the zero-divisor graph of $\mathbb{Z}_{n}[X \rrbracket$. In this paper, we study some properties of $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$. More precisely, we completely characterize the diameter and the girth of $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$. We also calculate the chromatic number of $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$.

1. Introduction

1.1. Preliminaries

In this subsection, we review some concepts from basic graph theory. Let G be a (undirected) graph. Recall that G is connected if there exists a path between any two distinct vertices of G. The graph G is complete if any two distinct vertices are adjacent. The complete graph with n vertices is denoted by K_{n}. The graph G is a complete bipartite graph if G can be partitioned into two disjoint nonempty vertex sets A and B such that two distinct vertices are adjacent if and only if they are in distinct vertex sets. For vertices a and b in $G, d(a, b)$ denotes the length of the

[^0]Received June 13, 2020; revised July 28, 2020; accepted August 4, 2020.
2020 Mathematics Subject Classification: 05C12, 05C15, 05C25, 05C38, 13B25, 13 F 25.
Key words and phrases: $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$, diameter, girth, clique, chromatic number.
shortest path from a to b. If there is no such path, then $d(a, b)$ is defined to be ∞; and $d(a, a)$ is defined to be zero. The diameter of G, denoted by $\operatorname{diam}(G)$, is the supremum of $\{d(a, b) \mid a$ and b are vertices of $G\}$. The girth of G, denoted by $\mathrm{g}(G)$, is defined as the length of the shortest cycle in G. If G contains no cycles, then $\mathrm{g}(G)$ is defined to be ∞. A subgraph H of G is an induced subgraph of G if two vertices of H are adjacent in H if and only if they are adjacent in G. The chromatic number of G is the minimum number of colors needed to color the vertices of G so that no two adjacent vertices share the same color, and is denoted by $\chi(G)$. A clique C in G is a subset of the vertex set of G such that the induced subgraph of G by C is a complete graph. A maximal clique in G is a clique that cannot be extended by including one more adjacent vertex. The clique number of G, denoted by $\mathrm{cl}(G)$, is the greatest integer $n \geq 1$ such that $K_{n} \subseteq G$. If $K_{n} \subseteq G$ for all integers $n \geq 1$, then $\operatorname{cl}(G)$ is defined to be ∞. It is easy to see that $\chi(G) \geq \operatorname{cl}(G)$.

1.2. The Zero-divisor Graph of a Commutative Ring

Let R be a commutative ring with identity and $\mathrm{Z}(R)$ the set of nonzero zerodivisors of R. The zero-divisor graph of R, denoted by $\Gamma(R)$, is the simple graph with the vertex set $\mathrm{Z}(R)$, and for distinct $a, b \in \mathrm{Z}(R), a$ and b are adjacent if and only if $a b=0$. Clearly, $\Gamma(R)$ is the null graph if and only if R is an integral domain.

In [6], Beck first introduced the concept of the zero-divisor graph of a commutative ring and in [3], Anderson and Naseer continued to study. In [3] and [6], all elements of R are vertices of the graph and the authors were mainly interested in graph coloring. In [2], Anderson and Livingston gave the present definition of $\Gamma(R)$ in order to emphasize the study of the interplay between graph-theoretic properties of $\Gamma(R)$ and ring-theoretic properties of R. It was shown that $\Gamma(R)$ is connected with $\operatorname{diam}(\Gamma(R)) \leq 3[2$, Theorem 2.3]. In $[8,(1.4)]$, Mulay proved that $g(\Gamma(R)) \leq 4$. In [5], the authors studied the zero-divisor graphs of polynomial rings and power series rings.

For more on the zero-divisor graph of a commutative ring, the readers can refer to a survey article [1].

Let \mathbb{Z}_{n} be the ring of integers modulo n and let $\mathbb{Z}_{n}[X]$ (resp., $\mathbb{Z}_{n} \llbracket X \rrbracket$) be the polynomial ring (resp., power series ring) over \mathbb{Z}_{n}. Let $\mathbb{Z}_{n}[X]$ be either $\mathbb{Z}_{n}[X]$ or $\mathbb{Z}_{n} \llbracket X \rrbracket$. In [9], the authors studied the zero-divisor graph of \mathbb{Z}_{n}. In fact, they completely characterized the diameter, the girth and the chromatic number of $\Gamma\left(\mathbb{Z}_{n}\right)$. The purpose of this paper is to study some properties of the zero-divisor graph of $\mathbb{Z}_{n}[X]$. If n is a prime number, then $\mathbb{Z}_{n}[X]$ has no zero-divisors; so $\Gamma\left(\mathbb{Z}_{n}[X]\right)$ is the null graph. Hence in this paper, we only consider the case that n is a composite. In Section 2, we completely characterize the diameter and the girth of $\Gamma\left(\mathbb{Z}_{n}[X]\right)$. In Section 3, we calculate the chromatic number of $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$. Note that all figures are drawn via website http://graphonline.ru/en/.

2. The Diameter and the Girth of $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$

In order to give the complete characterization of the diameter of $\Gamma\left(\mathbb{Z}_{n}[X]\right)$, we need the following lemma.

Lemma 2.1.([4, Chapter 1, Exercise 2(iii)] and [7, Theorem 5]) Let R be a commutative ring with identity. Then the following assertions hold.
(1) If $f \in \mathrm{Z}(R[X])$, then there exists a nonzero element $r \in R$ such that $r f=0$.
(2) If R is a Noetherian ring and $f \in \mathrm{Z}(R \llbracket X \rrbracket)$, then there exists a nonzero element $r \in R$ such that $r f=0$.

Let R be a commutative ring with identity. For a nonempty subset C of R, let $C[X \rrbracket$ be the subset of $R[X \rrbracket$ consisting of elements whose coefficients belong to C. For an element $f=\sum_{i \geq 0} a_{i} X^{i} \in R[X]$, the order of f is defined to be the smallest nonnegative integer n such that $a_{n} \neq 0$ and is denoted by ord (f).
Theorem 2.2. The following statements hold.
(1) $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{n}[X]\right)\right)=1$ if (and only if) $n=p^{2}$ for some prime p.
(2) $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right)=2\right.$ if (and only if) $n=p^{r}$ for some prime p and some integer $r \geq 3$, or $n=p q$ for some distinct primes p and q.
(3) $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right)=3\right.$ if (and only if) $n=$ pqr for some distinct primes p, q and some integer $r \geq 2$.

Proof. Before proving the result, we note that for all integers $n \geq 2, \mathbb{Z}_{n}$ is a Noetherian ring.
(1) Suppose that $n=p^{r}$ for some prime p and some integer $r \geq 3$. Let f and g be two distinct elements of $\mathrm{Z}\left(\mathbb{Z}_{p^{2}}[X]\right)$. Then by Lemma 2.1, f and g are elements of $\mathrm{Z}\left(\mathbb{Z}_{p^{2}}\right)[X]$. Note that $\mathrm{Z}\left(\mathbb{Z}_{p^{2}}\right)=\{p, 2 p, \ldots,(p-1) p\}$; so the product of any two elements of $\mathbb{Z}\left(\mathbb{Z}_{p^{2}}\right)$ is zero. Hence $f g=0$ in $\mathbb{Z}_{p^{2}}[X]$. This indicates that $\Gamma\left(\mathbb{Z}_{p^{2}}[X]\right)$ is a complete graph. Thus $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{p^{2}}[X \rrbracket)\right)=1\right.$.
(2) Suppose that $n=p^{r}$, where p is a prime and r is an integer greater than or equal to 3 . Let f and g be two distinct elements of $\mathrm{Z}\left(\mathbb{Z}_{p^{r}}[X]\right)$. Then by Lemma 2.1, f and g are elements of $\mathrm{Z}\left(\mathbb{Z}_{p^{r}}\right)\left[X \rrbracket\right.$. Note that $\mathrm{Z}\left(\mathbb{Z}_{p^{r}}\right)=\left\{p, 2 p, \ldots,\left(p^{r-1}-1\right) p\right\}$; so for all $a \in \mathrm{Z}\left(\mathbb{Z}_{p^{r}}\right)$, ap $p^{r-1}=0$ in $\mathbb{Z}_{p^{r}}$. Hence $f-p^{r-1}-g$ is a path in $\Gamma\left(\mathbb{Z}_{p^{r}}[X]\right)$, which implies that $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{p^{r}}[X \rrbracket)\right) \leq 2\right.$. Note that $p X$ is not adjacent to $\left(p^{r-1}-1\right) p X$ in $\Gamma\left(\mathbb{Z}_{p^{r}}[X \rrbracket)\right.$. Thus $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{p^{r}}[X \rrbracket)\right)=2\right.$.

Suppose that $n=p q$, where p and q are distinct primes. Let $A=\{p, 2 p, \ldots,(q-$ 1) $p\}$ and $B=\{q, 2 q, \ldots,(p-1) q\}$. Then $A \cap B=\emptyset$ and $\mathrm{Z}\left(\mathbb{Z}_{p q}\right)=A \cup B$. Let $f \in \mathrm{Z}\left(\mathbb{Z}_{p q}[X \rrbracket)\right.$. Then by Lemma 2.1, there exists an element $r \in \mathrm{Z}\left(\mathbb{Z}_{p q}\right)$ such that $r f=0$. Note that for any $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B, a_{1} a_{2} \neq 0$ and $b_{1} b_{2} \neq 0$ in $\mathbb{Z}_{p q}$; so if $r \in A$ (resp., $r \in B$), then $f \in B[X \rrbracket$ (resp., $f \in A[X \rrbracket$). Therefore $\mathrm{Z}\left(\mathbb{Z}_{p q}[X \rrbracket)=A[X \rrbracket \cup B[X \rrbracket\right.$. Note that $A[X \rrbracket \cap B[X \rrbracket=\emptyset$ and for any $a \in A$ and $b \in B$, $a b=0$. Hence $\Gamma\left(\mathbb{Z}_{p q}[X \rrbracket)\right.$ is a complete bipartite graph. Thus $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{p q}[X \rrbracket)\right)=2\right.$.
(3) Suppose that $n=p q r$, where p, q are distinct primes and r is an integer greater than or equal to 2 . Then $p X, q X \in \mathrm{Z}\left(\mathbb{Z}_{p q r}[X \rrbracket)\right.$ with $(p X)(q X) \neq 0$ in $\mathbb{Z}_{p q r}\left[X \rrbracket ;\right.$ so $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{p q r}[X \rrbracket)\right) \geq 2\right.$. Suppose to the contrary that there exists an element $f \in \mathrm{Z}\left(\mathbb{Z}_{p q r}[X \rrbracket)\right.$ such that $p X-f-q X$ is a path in $\Gamma\left(\mathbb{Z}_{p q r}[X \rrbracket)\right.$. Let a be the coefficient of $X^{\operatorname{ord}(f)}$ in f. Then $a p=0=a q$ in $\mathbb{Z}_{p q r}$; so a is a multiple of $p q r$. Therefore $a=0$ in $\mathbb{Z}_{p q r}$. This is absurd. Hence $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{p q r}[X \rrbracket)\right) \geq 3\right.$. Thus $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{p q r}[X \rrbracket)\right)=3[2\right.$, Theorem 2.3].

Figure 1: The diameter of some zero-divisor graphs

We next study the girth of $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$.
Proposition 2.3. If p is a prime and $r \geq 2$ is an integer, then $\mathrm{g}\left(\Gamma\left(\mathbb{Z}_{p^{r}}[X]\right)\right)=3$.
Proof. It suffices to note that $p^{r-1}-p^{r-1} X-p^{r-1} X^{2}-p^{r-1}$ is a cycle of length 3 in $\Gamma\left(\mathbb{Z}_{p^{r}}[X \rrbracket)\right.$.
Proposition 2.4. If p and q are distinct primes, then $g\left(\Gamma\left(\mathbb{Z}_{p q}[X]\right)\right)=4$.
Proof. Note that by the proof of Theorem 2.2(2), $\Gamma\left(\mathbb{Z}_{p q}[X \rrbracket)\right.$ is a complete bipartite graph; so $\Gamma\left(\mathbb{Z}_{p q}[X]\right)$ does not have a cycle of length 3 . Let A and B be as in the proof of Theorem 2.2(2). Then for any $f \in A[X]$ and $g \in B[X], p X-g-f-q X-p X$ is a cycle of length 4 in $\Gamma\left(\mathbb{Z}_{p q}[X]\right)$. Thus $\mathrm{g}\left(\Gamma\left(\mathbb{Z}_{p q}[X \rrbracket)\right)=4\right.$.

Lemma 2.5. If $\mathrm{g}\left(\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right)=3\right.$, then $\mathrm{g}\left(\Gamma\left(\mathbb{Z}_{m n}[X \rrbracket)\right)=3\right.$ for all integers $m \geq 1$.
Proof. Let m be any positive integer. Note that if $f-g-h-f$ is a cycle of length 3 in $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$, then $m f-m g-m h-m f$ is a cycle of length 3 in $\Gamma\left(\mathbb{Z}_{m n}[X \rrbracket)\right.$. Thus $\mathrm{g}\left(\Gamma\left(\mathbb{Z}_{m n}[X]\right)\right)=3$.
Lemma 2.6. Let p and q be distinct primes. Then $\mathrm{g}\left(\Gamma\left(\mathbb{Z}_{p q r}[X \rrbracket)\right)=3\right.$ for any prime r.
Proof. If $r=p$, then $p-p q-p q X-p$ is a cycle of length 3 in $\Gamma\left(\mathbb{Z}_{p^{2} q}[X]\right)$. If $r=q$, then $q-p q-p q X-q$ is a cycle of length 3 in $\Gamma\left(\mathbb{Z}_{p q^{2}}[X]\right)$. Suppose that $r \neq p$ and $r \neq q$. Then $p q-q r-p r-p q$ is a cycle of length 3 in $\Gamma\left(\mathbb{Z}_{p q r}[X \rrbracket)\right.$. Thus $\mathrm{g}\left(\Gamma\left(\mathbb{Z}_{p q r}[X \rrbracket)\right)=3\right.$ for any prime r.

Proposition 2.7. Let p and q be distinct primes. Then $\mathrm{g}\left(\Gamma\left(\mathbb{Z}_{p q r}[X \rrbracket)\right)=3\right.$ for any integer $r \geq 2$.
Proof. Note that r is a multiple of some prime. Thus the result follows directly from Lemmas 2.5 and 2.6.

By Propositions 2.3, 2.4 and 2.7, we can completely characterize the girth of $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$ as follows:

Theorem 2.8. The following statements hold.
(1) $\mathrm{g}\left(\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right)=3\right.$ if (and only if) each of the following conditions holds.
(a) $n=p^{r}$ for some prime p and integer $r \geq 2$.
(b) $n=p q r$ for some distinct primes p, q and integer $r \geq 2$.
(2) $\mathrm{g}\left(\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right)=4\right.$ if (and only if) $n=p q$ for some distinct primes p and q.

Figure 2: The girth of some zero-divisor graphs

3. The Chromatic Number of $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$

In this section, we calculate the chromatic number of $\Gamma\left(\mathbb{Z}_{n}[X]\right)$. Clearly, if there exists a clique in a graph, then the chromatic number of the graph is greater than or equal to the size of the clique. Hence in order to find the chromatic number of $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$, we investigate to find a (maximal) clique of $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$.
Lemma 3.1. If $r \geq 2$ is an integer, $n=p_{1} \cdots p_{r}$ for distinct primes p_{1}, \ldots, p_{r}, and $C=\left\{\left.\frac{n}{p_{i}} \right\rvert\, i=1, \ldots, r\right\}$, then C is a maximal clique of $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$.
Proof. Note that the product of any two distinct members of C is zero in $\mathbb{Z}_{n}[X]$; so C is a clique. Suppose to the contrary that there exists an element $f \in \mathrm{Z}\left(\mathbb{Z}_{n}[X]\right) \backslash C$ such that $c f=0$ in $\mathbb{Z}_{n}[X]$ for all $c \in C$. Let a be the coefficient of $X^{\operatorname{ord}(f)}$ in f. Then $c a=0$ in \mathbb{Z}_{n}; so a is a multiple of p_{i} for all $i=1, \ldots, r$. Hence a is a multiple of n, i.e., $a=0$ in \mathbb{Z}_{n}. This is a contradiction. Thus C is a maximal clique of $\Gamma\left(\mathbb{Z}_{n}[X]\right)$.
Proposition 3.2. If $r \geq 2$ is an integer and $n=p_{1} \cdots p_{r}$ for distinct primes p_{1}, \ldots, p_{r}, then $\chi\left(\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right)=r\right.$.

Proof. Let $C=\left\{\left.\frac{n}{p_{i}} \right\rvert\, i=1, \ldots, r\right\}$. Then by Lemma 3.1, C is a maximal clique of $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$. For each $i=1, \ldots, r$, let \bar{i} be the color of $\frac{n}{p_{i}}$. Clearly, $\mathrm{Z}\left(\mathbb{Z}_{n}[X]\right) \backslash C$ is a nonempty set. For each $f \in \mathrm{Z}\left(\mathbb{Z}_{n}[X \rrbracket) \backslash C\right.$, let $S_{f}=\{c \in C \mid f$ and c are not adjacent $\}$. Then by Lemma 3.1, C is a maximal clique of $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$; so S_{f} is a nonempty set. Hence we can find the smallest integer $k \in\{1, \ldots, r\}$ such that $\frac{n}{p_{k}} \in S_{f}$. In this case, we color f with \bar{k}.

To complete the proof, it remains to check that any two vertices of $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$ with the same color cannot be adjacent. Fix an element $k \in\{1, \ldots, r\}$ and let f and g be distinct vertices of $\Gamma\left(\mathbb{Z}_{n}[X]\right)$ with the same color \bar{k}. Since C is a clique, f and g cannot belong to C at the same time. Suppose that $f \in C$ and $g \in \mathrm{Z}\left(\mathbb{Z}_{n}[X]\right) \backslash C$. Then $f=\frac{n}{p_{k}}$; so by the coloring of g, f and g are not adjacent. Suppose that $f, g \in \mathrm{Z}\left(\mathbb{Z}_{n}[X]\right) \backslash C$ and write $f=\sum_{i \geq 0} a_{i} X^{i}$ and $g=\sum_{i \geq 0} b_{i} X^{i}$. Then by the coloring of f and g, f and g are not adjacent to $\frac{n}{p_{k}}$; so $\frac{n}{p_{k}} f \neq 0$ and $\frac{n}{p_{k}} g \neq 0$ in $\mathbb{Z}_{n}[X]$. Let α be the smallest nonnegative integer such that $\frac{n}{p_{k}} a_{\alpha} \neq 0$ in \mathbb{Z}_{n} and let β be the smallest nonnegative integer such that $\frac{n}{p_{k}} b_{\beta} \neq 0$ in \mathbb{Z}_{n}. Then $a_{0}, \ldots, a_{\alpha-1}, b_{0}, \ldots, b_{\beta-1}$ are divided by p_{k} and a_{α}, b_{β} are not divided by p_{k}; so the coefficient of $X^{\alpha+\beta}$ in $f g$ is not divided by p_{k}. Therefore $f g \neq 0$ in $\mathbb{Z}_{n}[X]$. Hence f and g are not adjacent.

Thus we conclude that $\chi\left(\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right)=r\right.$.
We denote the set of nonnegative integers by \mathbb{N}_{0}.
Lemma 3.3. If n is a multiple of the square of a prime, then $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$ has an infinite clique.
Proof. Suppose that n is a multiple of the square of a prime.
Case 1. $n=p_{1}^{2 a_{1}} \cdots p_{r}^{2 a_{r}}$ for distinct primes p_{1}, \ldots, p_{r} and positive integers a_{1}, \ldots, a_{r}. In this case, let $C=\left\{\sqrt{n} X^{m} \mid m \in \mathbb{N}_{0}\right\}$. Then the product of any two elements of C is zero in $\mathbb{Z}_{n}\left[X \rrbracket\right.$; so C is an infinite clique of $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$.
Case 2. $n=p_{1}^{2 a_{1}} \cdots p_{r}^{2 a_{r}} q_{1}^{2 b_{1}+1} \cdots q_{s}^{2 b_{s}+1}$ for distinct primes $p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{s}$ and nonnegative integers $a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{s}$, not all zero. In this case, let $k=$ $p_{1}^{a_{1}} \cdots p_{r}^{a_{r}} q_{1}^{b_{1}+1} \cdots q_{s}^{b_{s}+1}$ and let $C=\left\{k X^{m} \mid m \in \mathbb{N}_{0}\right\}$. Then the product of any two elements of C is zero in $\mathbb{Z}_{n}[X]$; so C is an infinite clique of $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$.

By Cases 1 and $2, \Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$ has an infinite clique.
Proposition 3.4. Let n be a multiple of the square of a prime. Then $\chi\left(\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right)=\infty\right.$.
Proof. By Lemma 3.3, $\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right.$ has an infinite clique; $\operatorname{so} \operatorname{cl}\left(\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right)=\infty\right.$. Thus $\chi\left(\Gamma\left(\mathbb{Z}_{n}[X]\right)\right)=\infty$.

By Propositions 3.2 and 3.4 , we obtain the main result in this section.
Theorem 3.5. The following statements hold.
(1) χ

$$
\chi\left(\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right)=r \text { if (and only if) } n=p_{1} \cdots p_{r}\right. \text { for some distinct primes }
$$ p_{1}, \ldots, p_{r}.

(2) $\chi\left(\Gamma\left(\mathbb{Z}_{n}[X \rrbracket)\right)=\infty\right.$ if (and only if) n is a multiple of the square of some prime.

Figure 3: The coloring of some zero-divisor graphs

Acknowledgements. We would like to thank the referee for several valuable suggestions.

References

[1] D. F. Anderson, M. C. Axtell, and J. A. Stickles, Jr, Zero-divisor graphs in commutative rings, Commutative Algebra: Noetherian and Non-Noetherian Perspectives, 23-45, Springer, New York, 2011.
[2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(1999), 434-447.
[3] D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra, 159(1993), 500-514.
[4] M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra, AddisonWesley Series in Math., Westview Press, 1969.
[5] M. Axtell, J. Coykendall, and J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Comm. Algebra, 33(2005), 2043-2050.
[6] I. Beck, Coloring of commutative rings, J. Algebra, 116(1988), 208-226.
[7] D. E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc., 27(1971), 427-433.
[8] S. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra, 30(2002), 35333558.
[9] S. J. Pi, S. H. Kim, and J. W. Lim, The zero-divisor graph of the ring of integers modulo n, Kyungpook Math. J., 59(2019), 591-601.

[^0]: * Corresponding Author.

