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Abstract. Let Zn be the ring of integers modulo n and let Zn[X]] be either Zn[X] or

Zn[[X]]. Let Γ(Zn[X]]) be the zero-divisor graph of Zn[X]]. In this paper, we study some

properties of Γ(Zn[X]]). More precisely, we completely characterize the diameter and the

girth of Γ(Zn[X]]). We also calculate the chromatic number of Γ(Zn[X]]).

1. Introduction

1.1. Preliminaries

In this subsection, we review some concepts from basic graph theory. Let G be
a (undirected) graph. Recall that G is connected if there exists a path between any
two distinct vertices of G. The graph G is complete if any two distinct vertices are
adjacent. The complete graph with n vertices is denoted by Kn. The graph G is a
complete bipartite graph if G can be partitioned into two disjoint nonempty vertex
sets A and B such that two distinct vertices are adjacent if and only if they are
in distinct vertex sets. For vertices a and b in G, d(a, b) denotes the length of the
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shortest path from a to b. If there is no such path, then d(a, b) is defined to be ∞;
and d(a, a) is defined to be zero. The diameter of G, denoted by diam(G), is the
supremum of {d(a, b) | a and b are vertices of G}. The girth of G, denoted by g(G),
is defined as the length of the shortest cycle in G. If G contains no cycles, then g(G)
is defined to be ∞. A subgraph H of G is an induced subgraph of G if two vertices
of H are adjacent in H if and only if they are adjacent in G. The chromatic number
of G is the minimum number of colors needed to color the vertices of G so that no
two adjacent vertices share the same color, and is denoted by χ(G). A clique C in
G is a subset of the vertex set of G such that the induced subgraph of G by C is
a complete graph. A maximal clique in G is a clique that cannot be extended by
including one more adjacent vertex. The clique number of G, denoted by cl(G), is
the greatest integer n ≥ 1 such that Kn ⊆ G. If Kn ⊆ G for all integers n ≥ 1,
then cl(G) is defined to be ∞. It is easy to see that χ(G) ≥ cl(G).

1.2. The Zero-divisor Graph of a Commutative Ring

Let R be a commutative ring with identity and Z(R) the set of nonzero zero-
divisors of R. The zero-divisor graph of R, denoted by Γ(R), is the simple graph
with the vertex set Z(R), and for distinct a, b ∈ Z(R), a and b are adjacent if and
only if ab = 0. Clearly, Γ(R) is the null graph if and only if R is an integral domain.

In [6], Beck first introduced the concept of the zero-divisor graph of a commu-
tative ring and in [3], Anderson and Naseer continued to study. In [3] and [6], all
elements of R are vertices of the graph and the authors were mainly interested in
graph coloring. In [2], Anderson and Livingston gave the present definition of Γ(R)
in order to emphasize the study of the interplay between graph-theoretic properties
of Γ(R) and ring-theoretic properties of R. It was shown that Γ(R) is connected
with diam(Γ(R)) ≤ 3 [2, Theorem 2.3]. In [8, (1.4)], Mulay proved that g(Γ(R)) ≤ 4.
In [5], the authors studied the zero-divisor graphs of polynomial rings and power
series rings.

For more on the zero-divisor graph of a commutative ring, the readers can refer
to a survey article [1].

Let Zn be the ring of integers modulo n and let Zn[X] (resp., Zn[[X]]) be the
polynomial ring (resp., power series ring) over Zn. Let Zn[X]] be either Zn[X] or
Zn[[X]]. In [9], the authors studied the zero-divisor graph of Zn. In fact, they com-
pletely characterized the diameter, the girth and the chromatic number of Γ(Zn).
The purpose of this paper is to study some properties of the zero-divisor graph of
Zn[X]]. If n is a prime number, then Zn[X]] has no zero-divisors; so Γ(Zn[X]]) is the
null graph. Hence in this paper, we only consider the case that n is a composite.
In Section 2, we completely characterize the diameter and the girth of Γ(Zn[X]]).
In Section 3, we calculate the chromatic number of Γ(Zn[X]]). Note that all figures
are drawn via website http://graphonline.ru/en/.
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2. The Diameter and the Girth of Γ(Zn[X]])

In order to give the complete characterization of the diameter of Γ(Zn[X]]), we
need the following lemma.

Lemma 2.1.([4, Chapter 1, Exercise 2(iii)] and [7, Theorem 5]) Let R be a com-
mutative ring with identity. Then the following assertions hold.

(1) If f ∈ Z(R[X]), then there exists a nonzero element r ∈ R such that rf = 0.

(2) If R is a Noetherian ring and f ∈ Z(R[[X]]), then there exists a nonzero
element r ∈ R such that rf = 0.

Let R be a commutative ring with identity. For a nonempty subset C of R, let
C[X]] be the subset of R[X]] consisting of elements whose coefficients belong to C.
For an element f =

∑
i≥0 aiX

i ∈ R[X]], the order of f is defined to be the smallest
nonnegative integer n such that an 6= 0 and is denoted by ord(f).

Theorem 2.2. The following statements hold.

(1) diam(Γ(Zn[X]])) = 1 if (and only if) n = p2 for some prime p.

(2) diam(Γ(Zn[X]])) = 2 if (and only if) n = pr for some prime p and some
integer r ≥ 3, or n = pq for some distinct primes p and q.

(3) diam(Γ(Zn[X]])) = 3 if (and only if) n = pqr for some distinct primes p, q
and some integer r ≥ 2.

Proof. Before proving the result, we note that for all integers n ≥ 2, Zn is a
Noetherian ring.

(1) Suppose that n = pr for some prime p and some integer r ≥ 3. Let f and g
be two distinct elements of Z(Zp2 [X]]). Then by Lemma 2.1, f and g are elements
of Z(Zp2)[X]]. Note that Z(Zp2) = {p, 2p, . . . , (p − 1)p}; so the product of any two
elements of Z(Zp2) is zero. Hence fg = 0 in Zp2 [X]]. This indicates that Γ(Zp2 [X]])
is a complete graph. Thus diam(Γ(Zp2 [X]])) = 1.

(2) Suppose that n = pr, where p is a prime and r is an integer greater than or
equal to 3. Let f and g be two distinct elements of Z(Zpr [X]]). Then by Lemma 2.1,
f and g are elements of Z(Zpr )[X]]. Note that Z(Zpr ) = {p, 2p, . . . , (pr−1 − 1)p}; so
for all a ∈ Z(Zpr ), apr−1 = 0 in Zpr . Hence f−pr−1−g is a path in Γ(Zpr [X]]), which
implies that diam(Γ(Zpr [X]])) ≤ 2. Note that pX is not adjacent to (pr−1 − 1)pX
in Γ(Zpr [X]]). Thus diam(Γ(Zpr [X]])) = 2.

Suppose that n = pq, where p and q are distinct primes. Let A = {p, 2p, . . . , (q−
1)p} and B = {q, 2q, . . . , (p − 1)q}. Then A ∩ B = ∅ and Z(Zpq) = A ∪ B. Let
f ∈ Z(Zpq[X]]). Then by Lemma 2.1, there exists an element r ∈ Z(Zpq) such that
rf = 0. Note that for any a1, a2 ∈ A and b1, b2 ∈ B, a1a2 6= 0 and b1b2 6= 0
in Zpq; so if r ∈ A (resp., r ∈ B), then f ∈ B[X]] (resp., f ∈ A[X]]). Therefore
Z(Zpq[X]]) = A[X]]∪B[X]]. Note that A[X]]∩B[X]] = ∅ and for any a ∈ A and b ∈ B,
ab = 0. Hence Γ(Zpq[X]]) is a complete bipartite graph. Thus diam(Γ(Zpq[X]])) = 2.
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(3) Suppose that n = pqr, where p, q are distinct primes and r is an integer
greater than or equal to 2. Then pX, qX ∈ Z(Zpqr[X]]) with (pX)(qX) 6= 0 in
Zpqr[X]]; so diam(Γ(Zpqr[X]])) ≥ 2. Suppose to the contrary that there exists an
element f ∈ Z(Zpqr[X]]) such that pX − f − qX is a path in Γ(Zpqr[X]]). Let a
be the coefficient of Xord(f) in f . Then ap = 0 = aq in Zpqr; so a is a multiple of
pqr. Therefore a = 0 in Zpqr. This is absurd. Hence diam(Γ(Zpqr[X]])) ≥ 3. Thus
diam(Γ(Zpqr[X]])) = 3 [2, Theorem 2.3]. 2

Figure 1: The diameter of some zero-divisor graphs

We next study the girth of Γ(Zn[X]]).

Proposition 2.3. If p is a prime and r ≥ 2 is an integer, then g(Γ(Zpr [X]])) = 3.

Proof. It suffices to note that pr−1 − pr−1X − pr−1X2 − pr−1 is a cycle of length 3
in Γ(Zpr [X]]). 2

Proposition 2.4. If p and q are distinct primes, then g(Γ(Zpq[X]])) = 4.

Proof. Note that by the proof of Theorem 2.2(2), Γ(Zpq[X]]) is a complete bipartite
graph; so Γ(Zpq[X]]) does not have a cycle of length 3. Let A and B be as in the
proof of Theorem 2.2(2). Then for any f ∈ A[X] and g ∈ B[X], pX−g−f−qX−pX
is a cycle of length 4 in Γ(Zpq[X]]). Thus g(Γ(Zpq[X]])) = 4. 2

Lemma 2.5. If g(Γ(Zn[X]])) = 3, then g(Γ(Zmn[X]])) = 3 for all integers m ≥ 1.

Proof. Let m be any positive integer. Note that if f − g− h− f is a cycle of length
3 in Γ(Zn[X]]), then mf −mg−mh−mf is a cycle of length 3 in Γ(Zmn[X]]). Thus
g(Γ(Zmn[X]])) = 3. 2

Lemma 2.6. Let p and q be distinct primes. Then g(Γ(Zpqr[X]])) = 3 for any
prime r.

Proof. If r = p, then p − pq − pqX − p is a cycle of length 3 in Γ(Zp2q[X]]). If
r = q, then q − pq − pqX − q is a cycle of length 3 in Γ(Zpq2 [X]]). Suppose that
r 6= p and r 6= q. Then pq− qr− pr− pq is a cycle of length 3 in Γ(Zpqr[X]]). Thus
g(Γ(Zpqr[X]])) = 3 for any prime r. 2
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Proposition 2.7. Let p and q be distinct primes. Then g(Γ(Zpqr[X]])) = 3 for any
integer r ≥ 2.

Proof. Note that r is a multiple of some prime. Thus the result follows directly
from Lemmas 2.5 and 2.6. 2

By Propositions 2.3, 2.4 and 2.7, we can completely characterize the girth of
Γ(Zn[X]]) as follows:

Theorem 2.8. The following statements hold.

(1) g(Γ(Zn[X]])) = 3 if (and only if) each of the following conditions holds.

(a) n = pr for some prime p and integer r ≥ 2.

(b) n = pqr for some distinct primes p, q and integer r ≥ 2.

(2) g(Γ(Zn[X]])) = 4 if (and only if) n = pq for some distinct primes p and q.

Figure 2: The girth of some zero-divisor graphs

3. The Chromatic Number of Γ(Zn[X]])

In this section, we calculate the chromatic number of Γ(Zn[X]]). Clearly, if there
exists a clique in a graph, then the chromatic number of the graph is greater than
or equal to the size of the clique. Hence in order to find the chromatic number of
Γ(Zn[X]]), we investigate to find a (maximal) clique of Γ(Zn[X]]).

Lemma 3.1. If r ≥ 2 is an integer, n = p1 · · · pr for distinct primes p1, . . . , pr,
and C = { npi | i = 1, . . . , r}, then C is a maximal clique of Γ(Zn[X]]).

Proof. Note that the product of any two distinct members of C is zero in Zn[X]]; so
C is a clique. Suppose to the contrary that there exists an element f ∈ Z(Zn[X]])\C
such that cf = 0 in Zn[X]] for all c ∈ C. Let a be the coefficient of Xord(f) in f .
Then ca = 0 in Zn; so a is a multiple of pi for all i = 1, . . . , r. Hence a is a multiple
of n, i.e., a = 0 in Zn. This is a contradiction. Thus C is a maximal clique of
Γ(Zn[X]]). 2

Proposition 3.2. If r ≥ 2 is an integer and n = p1 · · · pr for distinct primes
p1, . . . , pr, then χ(Γ(Zn[X]])) = r.
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Proof. Let C = { npi | i = 1, . . . , r}. Then by Lemma 3.1, C is a maximal clique of

Γ(Zn[X]]). For each i = 1, . . . , r, let i be the color of n
pi

. Clearly, Z(Zn[X]]) \ C
is a nonempty set. For each f ∈ Z(Zn[X]]) \ C, let Sf = {c ∈ C | f and c are
not adjacent}. Then by Lemma 3.1, C is a maximal clique of Γ(Zn[X]]); so Sf is
a nonempty set. Hence we can find the smallest integer k ∈ {1, . . . , r} such that
n
pk
∈ Sf . In this case, we color f with k.

To complete the proof, it remains to check that any two vertices of Γ(Zn[X]])
with the same color cannot be adjacent. Fix an element k ∈ {1, . . . , r} and let f and
g be distinct vertices of Γ(Zn[X]]) with the same color k. Since C is a clique, f and
g cannot belong to C at the same time. Suppose that f ∈ C and g ∈ Z(Zn[X]]) \C.
Then f = n

pk
; so by the coloring of g, f and g are not adjacent. Suppose that

f, g ∈ Z(Zn[X]]) \ C and write f =
∑
i≥0 aiX

i and g =
∑
i≥0 biX

i. Then by the
coloring of f and g, f and g are not adjacent to n

pk
; so n

pk
f 6= 0 and n

pk
g 6= 0

in Zn[X]]. Let α be the smallest nonnegative integer such that n
pk
aα 6= 0 in Zn

and let β be the smallest nonnegative integer such that n
pk
bβ 6= 0 in Zn. Then

a0, . . . , aα−1, b0, . . . , bβ−1 are divided by pk and aα, bβ are not divided by pk; so the
coefficient of Xα+β in fg is not divided by pk. Therefore fg 6= 0 in Zn[X]]. Hence
f and g are not adjacent.

Thus we conclude that χ(Γ(Zn[X]])) = r. 2

We denote the set of nonnegative integers by N0.

Lemma 3.3. If n is a multiple of the square of a prime, then Γ(Zn[X]]) has an
infinite clique.

Proof. Suppose that n is a multiple of the square of a prime.

Case 1. n = p2a11 · · · p2arr for distinct primes p1, . . . , pr and positive integers
a1, . . . , ar. In this case, let C = {

√
nXm |m ∈ N0}. Then the product of any

two elements of C is zero in Zn[X]]; so C is an infinite clique of Γ(Zn[X]]).

Case 2. n = p2a11 · · · p2arr q2b1+1
1 · · · q2bs+1

s for distinct primes p1, . . . , pr, q1, . . . , qs
and nonnegative integers a1, . . . , ar, b1, . . . , bs, not all zero. In this case, let k =
pa11 · · · parr q

b1+1
1 · · · qbs+1

s and let C = {kXm |m ∈ N0}. Then the product of any
two elements of C is zero in Zn[X]]; so C is an infinite clique of Γ(Zn[X]]).

By Cases 1 and 2, Γ(Zn[X]]) has an infinite clique. 2

Proposition 3.4. Let n be a multiple of the square of a prime. Then
χ(Γ(Zn[X]])) =∞.

Proof. By Lemma 3.3, Γ(Zn[X]]) has an infinite clique; so cl(Γ(Zn[X]])) =∞. Thus
χ(Γ(Zn[X]])) =∞. 2

By Propositions 3.2 and 3.4, we obtain the main result in this section.

Theorem 3.5. The following statements hold.

(1) χ(Γ(Zn[X]])) = r if (and only if) n = p1 · · · pr for some distinct primes
p1, . . . , pr.



The Zero-divisor Graph of Zn[X]] 729

(2) χ(Γ(Zn[X]])) =∞ if (and only if) n is a multiple of the square of some prime.

Figure 3: The coloring of some zero-divisor graphs
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