KYUNGPOOK Math. J. 60(2020), 723-729 https://doi.org/10.5666/KMJ.2020.60.4.723 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

The Zero-divisor Graph of $\mathbb{Z}_n[X]$

Min Ji Park

Department of Mathematics, College of Life Science and Nano Technology, Hannam University, Daejeon 34430, Republic of Korea e-mail: mjpark5764@gmail.com

EUN SUP KIM

Department of Mathematics, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea e-mail: eskim@knu.ac.kr

JUNG WOOK LIM* Department of Mathematics, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea e-mail: jwlim@knu.ac.kr

ABSTRACT. Let \mathbb{Z}_n be the ring of integers modulo n and let $\mathbb{Z}_n[X]$ be either $\mathbb{Z}_n[X]$ or $\mathbb{Z}_n[X]$. Let $\Gamma(\mathbb{Z}_n[X])$ be the zero-divisor graph of $\mathbb{Z}_n[X]$. In this paper, we study some properties of $\Gamma(\mathbb{Z}_n[X])$. More precisely, we completely characterize the diameter and the girth of $\Gamma(\mathbb{Z}_n[X])$. We also calculate the chromatic number of $\Gamma(\mathbb{Z}_n[X])$.

1. Introduction

1.1. Preliminaries

In this subsection, we review some concepts from basic graph theory. Let G be a (undirected) graph. Recall that G is *connected* if there exists a path between any two distinct vertices of G. The graph G is *complete* if any two distinct vertices are adjacent. The complete graph with n vertices is denoted by K_n . The graph G is a *complete bipartite graph* if G can be partitioned into two disjoint nonempty vertex sets A and B such that two distinct vertices are adjacent if and only if they are in distinct vertex sets. For vertices a and b in G, d(a, b) denotes the length of the

^{*} Corresponding Author.

Received June 13, 2020; revised July 28, 2020; accepted August 4, 2020.

²⁰²⁰ Mathematics Subject Classification: 05C12, 05C15, 05C25, 05C38, 13B25, 13F25. Key words and phrases: $\Gamma(\mathbb{Z}_n[X])$, diameter, girth, clique, chromatic number.

shortest path from a to b. If there is no such path, then d(a, b) is defined to be ∞ ; and d(a, a) is defined to be zero. The diameter of G, denoted by diam(G), is the supremum of $\{d(a, b) \mid a \text{ and } b \text{ are vertices of } G\}$. The girth of G, denoted by g(G), is defined as the length of the shortest cycle in G. If G contains no cycles, then g(G)is defined to be ∞ . A subgraph H of G is an induced subgraph of G if two vertices of H are adjacent in H if and only if they are adjacent in G. The chromatic number of G is the minimum number of colors needed to color the vertices of G so that no two adjacent vertices share the same color, and is denoted by $\chi(G)$. A clique C in G is a subset of the vertex set of G such that the induced subgraph of G by C is a complete graph. A maximal clique in G is a clique that cannot be extended by including one more adjacent vertex. The clique number of G, denoted by cl(G), is the greatest integer $n \geq 1$ such that $K_n \subseteq G$. If $K_n \subseteq G$ for all integers $n \geq 1$, then cl(G) is defined to be ∞ . It is easy to see that $\chi(G) \geq cl(G)$.

1.2. The Zero-divisor Graph of a Commutative Ring

Let R be a commutative ring with identity and Z(R) the set of nonzero zerodivisors of R. The zero-divisor graph of R, denoted by $\Gamma(R)$, is the simple graph with the vertex set Z(R), and for distinct $a, b \in Z(R)$, a and b are adjacent if and only if ab = 0. Clearly, $\Gamma(R)$ is the null graph if and only if R is an integral domain.

In [6], Beck first introduced the concept of the zero-divisor graph of a commutative ring and in [3], Anderson and Naseer continued to study. In [3] and [6], all elements of R are vertices of the graph and the authors were mainly interested in graph coloring. In [2], Anderson and Livingston gave the present definition of $\Gamma(R)$ in order to emphasize the study of the interplay between graph-theoretic properties of $\Gamma(R)$ and ring-theoretic properties of R. It was shown that $\Gamma(R)$ is connected with diam $(\Gamma(R)) \leq 3$ [2, Theorem 2.3]. In [8, (1.4)], Mulay proved that $g(\Gamma(R)) \leq 4$. In [5], the authors studied the zero-divisor graphs of polynomial rings and power series rings.

For more on the zero-divisor graph of a commutative ring, the readers can refer to a survey article [1].

Let \mathbb{Z}_n be the ring of integers modulo n and let $\mathbb{Z}_n[X]$ (resp., $\mathbb{Z}_n[\![X]\!]$) be the polynomial ring (resp., power series ring) over \mathbb{Z}_n . Let $\mathbb{Z}_n[X]\!]$ be either $\mathbb{Z}_n[X]$ or $\mathbb{Z}_n[\![X]\!]$. In [9], the authors studied the zero-divisor graph of \mathbb{Z}_n . In fact, they completely characterized the diameter, the girth and the chromatic number of $\Gamma(\mathbb{Z}_n)$. The purpose of this paper is to study some properties of the zero-divisor graph of $\mathbb{Z}_n[X]\!]$. If n is a prime number, then $\mathbb{Z}_n[X]\!]$ has no zero-divisors; so $\Gamma(\mathbb{Z}_n[X]\!]$) is the null graph. Hence in this paper, we only consider the case that n is a composite. In Section 2, we completely characterize the diameter and the girth of $\Gamma(\mathbb{Z}_n[X]\!]$). In Section 3, we calculate the chromatic number of $\Gamma(\mathbb{Z}_n[X]\!]$). Note that all figures are drawn via website http://graphonline.ru/en/.

2. The Diameter and the Girth of $\Gamma(\mathbb{Z}_n[X])$

In order to give the complete characterization of the diameter of $\Gamma(\mathbb{Z}_n[X])$, we need the following lemma.

Lemma 2.1.([4, Chapter 1, Exercise 2(iii)] and [7, Theorem 5]) Let R be a commutative ring with identity. Then the following assertions hold.

- (1) If $f \in Z(R[X])$, then there exists a nonzero element $r \in R$ such that rf = 0.
- (2) If R is a Noetherian ring and $f \in Z(R[X])$, then there exists a nonzero element $r \in R$ such that rf = 0.

Let R be a commutative ring with identity. For a nonempty subset C of R, let C[X] be the subset of R[X] consisting of elements whose coefficients belong to C. For an element $f = \sum_{i\geq 0} a_i X^i \in R[X]$, the *order* of f is defined to be the smallest nonnegative integer n such that $a_n \neq 0$ and is denoted by ord(f).

Theorem 2.2. The following statements hold.

- (1) diam $(\Gamma(\mathbb{Z}_n[X])) = 1$ if (and only if) $n = p^2$ for some prime p.
- (2) diam($\Gamma(\mathbb{Z}_n[X])$) = 2 if (and only if) $n = p^r$ for some prime p and some integer $r \ge 3$, or n = pq for some distinct primes p and q.
- (3) diam($\Gamma(\mathbb{Z}_n[X])$) = 3 if (and only if) n = pqr for some distinct primes p, qand some integer $r \geq 2$.

Proof. Before proving the result, we note that for all integers $n \geq 2$, \mathbb{Z}_n is a Noetherian ring.

(1) Suppose that $n = p^r$ for some prime p and some integer $r \ge 3$. Let f and g be two distinct elements of $\mathbb{Z}(\mathbb{Z}_{p^2}[X])$. Then by Lemma 2.1, f and g are elements of $\mathbb{Z}(\mathbb{Z}_{p^2})[X]$. Note that $\mathbb{Z}(\mathbb{Z}_{p^2}) = \{p, 2p, \ldots, (p-1)p\}$; so the product of any two elements of $\mathbb{Z}(\mathbb{Z}_{p^2})$ is zero. Hence fg = 0 in $\mathbb{Z}_{p^2}[X]$. This indicates that $\Gamma(\mathbb{Z}_{p^2}[X])$ is a complete graph. Thus diam $(\Gamma(\mathbb{Z}_{p^2}[X])) = 1$.

(2) Suppose that $n = p^r$, where p is a prime and r is an integer greater than or equal to 3. Let f and g be two distinct elements of $\mathbb{Z}(\mathbb{Z}_{p^r}[X])$. Then by Lemma 2.1, f and g are elements of $\mathbb{Z}(\mathbb{Z}_{p^r})[X]$. Note that $\mathbb{Z}(\mathbb{Z}_{p^r}) = \{p, 2p, \ldots, (p^{r-1}-1)p\}$; so for all $a \in \mathbb{Z}(\mathbb{Z}_{p^r})$, $ap^{r-1} = 0$ in \mathbb{Z}_{p^r} . Hence $f - p^{r-1} - g$ is a path in $\Gamma(\mathbb{Z}_{p^r}[X])$, which implies that diam $(\Gamma(\mathbb{Z}_{p^r}[X])) \leq 2$. Note that pX is not adjacent to $(p^{r-1}-1)pX$ in $\Gamma(\mathbb{Z}_{p^r}[X])$. Thus diam $(\Gamma(\mathbb{Z}_{p^r}[X])) = 2$.

Suppose that n = pq, where p and q are distinct primes. Let $A = \{p, 2p, \ldots, (q-1)p\}$ and $B = \{q, 2q, \ldots, (p-1)q\}$. Then $A \cap B = \emptyset$ and $Z(\mathbb{Z}_{pq}) = A \cup B$. Let $f \in Z(\mathbb{Z}_{pq}[X])$. Then by Lemma 2.1, there exists an element $r \in Z(\mathbb{Z}_{pq})$ such that rf = 0. Note that for any $a_1, a_2 \in A$ and $b_1, b_2 \in B$, $a_1a_2 \neq 0$ and $b_1b_2 \neq 0$ in \mathbb{Z}_{pq} ; so if $r \in A$ (resp., $r \in B$), then $f \in B[X]$ (resp., $f \in A[X]$). Therefore $Z(\mathbb{Z}_{pq}[X]) = A[X] \cup B[X]$. Note that $A[X] \cap B[X] = \emptyset$ and for any $a \in A$ and $b \in B$, ab = 0. Hence $\Gamma(\mathbb{Z}_{pq}[X])$ is a complete bipartite graph. Thus diam $(\Gamma(\mathbb{Z}_{pq}[X])) = 2$.

(3) Suppose that n = pqr, where p, q are distinct primes and r is an integer greater than or equal to 2. Then $pX, qX \in \mathbb{Z}(\mathbb{Z}_{pqr}[X])$ with $(pX)(qX) \neq 0$ in $\mathbb{Z}_{pqr}[X]$; so diam $(\Gamma(\mathbb{Z}_{pqr}[X])) \geq 2$. Suppose to the contrary that there exists an element $f \in \mathbb{Z}(\mathbb{Z}_{pqr}[X])$ such that pX - f - qX is a path in $\Gamma(\mathbb{Z}_{pqr}[X])$. Let abe the coefficient of $X^{\operatorname{ord}(f)}$ in f. Then ap = 0 = aq in \mathbb{Z}_{pqr} ; so a is a multiple of pqr. Therefore a = 0 in \mathbb{Z}_{pqr} . This is absurd. Hence diam $(\Gamma(\mathbb{Z}_{pqr}[X])) \geq 3$. Thus diam $(\Gamma(\mathbb{Z}_{pqr}[X])) = 3$ [2, Theorem 2.3]. \Box

Figure 1: The diameter of some zero-divisor graphs

We next study the girth of $\Gamma(\mathbb{Z}_n[X])$.

Proposition 2.3. If p is a prime and $r \ge 2$ is an integer, then $g(\Gamma(\mathbb{Z}_{p^r}[X])) = 3$. *Proof.* It suffices to note that $p^{r-1} - p^{r-1}X - p^{r-1}X^2 - p^{r-1}$ is a cycle of length 3 in $\Gamma(\mathbb{Z}_{p^r}[X])$.

Proposition 2.4. If p and q are distinct primes, then $g(\Gamma(\mathbb{Z}_{pq}[X])) = 4$.

Proof. Note that by the proof of Theorem 2.2(2), $\Gamma(\mathbb{Z}_{pq}[X])$ is a complete bipartite graph; so $\Gamma(\mathbb{Z}_{pq}[X])$ does not have a cycle of length 3. Let A and B be as in the proof of Theorem 2.2(2). Then for any $f \in A[X]$ and $g \in B[X]$, pX-g-f-qX-pX is a cycle of length 4 in $\Gamma(\mathbb{Z}_{pq}[X])$. Thus $g(\Gamma(\mathbb{Z}_{pq}[X])) = 4$. \Box

Lemma 2.5. If $g(\Gamma(\mathbb{Z}_n[X])) = 3$, then $g(\Gamma(\mathbb{Z}_{mn}[X])) = 3$ for all integers $m \ge 1$.

Proof. Let m be any positive integer. Note that if f - g - h - f is a cycle of length 3 in $\Gamma(\mathbb{Z}_n[X])$, then mf - mg - mh - mf is a cycle of length 3 in $\Gamma(\mathbb{Z}_{mn}[X])$. Thus $g(\Gamma(\mathbb{Z}_{mn}[X])) = 3$.

Lemma 2.6. Let p and q be distinct primes. Then $g(\Gamma(\mathbb{Z}_{pqr}[X])) = 3$ for any prime r.

Proof. If r = p, then p - pq - pqX - p is a cycle of length 3 in $\Gamma(\mathbb{Z}_{p^2q}[X])$. If r = q, then q - pq - pqX - q is a cycle of length 3 in $\Gamma(\mathbb{Z}_{pq^2}[X])$. Suppose that $r \neq p$ and $r \neq q$. Then pq - qr - pr - pq is a cycle of length 3 in $\Gamma(\mathbb{Z}_{pqr}[X])$. Thus $g(\Gamma(\mathbb{Z}_{pqr}[X])) = 3$ for any prime r.

Proposition 2.7. Let p and q be distinct primes. Then $g(\Gamma(\mathbb{Z}_{pqr}[X])) = 3$ for any integer $r \geq 2$.

Proof. Note that r is a multiple of some prime. Thus the result follows directly from Lemmas 2.5 and 2.6.

By Propositions 2.3, 2.4 and 2.7, we can completely characterize the girth of $\Gamma(\mathbb{Z}_n[X])$ as follows:

Theorem 2.8. The following statements hold.

- (1) $g(\Gamma(\mathbb{Z}_n[X])) = 3$ if (and only if) each of the following conditions holds.
 - (a) $n = p^r$ for some prime p and integer $r \ge 2$.
 - (b) n = pqr for some distinct primes p, q and integer $r \ge 2$.
- (2) $g(\Gamma(\mathbb{Z}_n[X])) = 4$ if (and only if) n = pq for some distinct primes p and q.

Figure 2: The girth of some zero-divisor graphs

3. The Chromatic Number of $\Gamma(\mathbb{Z}_n[X])$

In this section, we calculate the chromatic number of $\Gamma(\mathbb{Z}_n[X])$. Clearly, if there exists a clique in a graph, then the chromatic number of the graph is greater than or equal to the size of the clique. Hence in order to find the chromatic number of $\Gamma(\mathbb{Z}_n[X])$, we investigate to find a (maximal) clique of $\Gamma(\mathbb{Z}_n[X])$.

Lemma 3.1. If $r \ge 2$ is an integer, $n = p_1 \cdots p_r$ for distinct primes p_1, \ldots, p_r , and $C = \{\frac{n}{p_i} | i = 1, \ldots, r\}$, then C is a maximal clique of $\Gamma(\mathbb{Z}_n[X])$.

Proof. Note that the product of any two distinct members of C is zero in $\mathbb{Z}_n[X]$; so C is a clique. Suppose to the contrary that there exists an element $f \in \mathbb{Z}(\mathbb{Z}_n[X]) \setminus C$ such that cf = 0 in $\mathbb{Z}_n[X]$ for all $c \in C$. Let a be the coefficient of $X^{\operatorname{ord}(f)}$ in f. Then ca = 0 in \mathbb{Z}_n ; so a is a multiple of p_i for all $i = 1, \ldots, r$. Hence a is a multiple of n, *i.e.*, a = 0 in \mathbb{Z}_n . This is a contradiction. Thus C is a maximal clique of $\Gamma(\mathbb{Z}_n[X])$.

Proposition 3.2. If $r \ge 2$ is an integer and $n = p_1 \cdots p_r$ for distinct primes p_1, \ldots, p_r , then $\chi(\Gamma(\mathbb{Z}_n[X])) = r$.

Proof. Let $C = \{\frac{n}{p_i} | i = 1, ..., r\}$. Then by Lemma 3.1, C is a maximal clique of $\Gamma(\mathbb{Z}_n[X])$. For each i = 1, ..., r, let \overline{i} be the color of $\frac{n}{p_i}$. Clearly, $\mathbb{Z}(\mathbb{Z}_n[X]) \setminus C$ is a nonempty set. For each $f \in \mathbb{Z}(\mathbb{Z}_n[X]) \setminus C$, let $S_f = \{c \in C \mid f \text{ and } c \text{ are } c \in C \mid f \}$ not adjacent}. Then by Lemma 3.1, C is a maximal clique of $\Gamma(\mathbb{Z}_n[X])$; so S_f is a nonempty set. Hence we can find the smallest integer $k \in \{1, \ldots, r\}$ such that $\frac{n}{p_k} \in S_f$. In this case, we color f with \overline{k} .

To complete the proof, it remains to check that any two vertices of $\Gamma(\mathbb{Z}_n[X])$ with the same color cannot be adjacent. Fix an element $k \in \{1, ..., r\}$ and let f and g be distinct vertices of $\Gamma(\mathbb{Z}_n[X])$ with the same color k. Since C is a clique, f and g cannot belong to C at the same time. Suppose that $f \in C$ and $g \in \mathbb{Z}(\mathbb{Z}_n[X]) \setminus C$. Then $f = \frac{n}{p_k}$; so by the coloring of g, f and g are not adjacent. Suppose that $f,g \in \mathbb{Z}(\mathbb{Z}_n[X]) \setminus C$ and write $f = \sum_{i\geq 0} a_i X^i$ and $g = \sum_{i\geq 0} b_i X^i$. Then by the coloring of f and g, f and g are not adjacent to $\frac{n}{p_k}$; so $\frac{n}{p_k}f \neq 0$ and $\frac{n}{p_k}g \neq 0$ in $\mathbb{Z}_n[X]$. Let α be the smallest nonnegative integer such that $\frac{n}{p_k}a_\alpha \neq 0$ in \mathbb{Z}_n and let β be the smallest nonnegative integer such that $\frac{n}{p_k}b_\beta \neq 0$ in \mathbb{Z}_n . Then $a_0, \ldots, a_{\alpha-1}, b_0, \ldots, b_{\beta-1}$ are divided by p_k and a_α, b_β are not divided by p_k ; so the coefficient of $X^{\alpha+\beta}$ in factor and the factor $f \in X^{\alpha+\beta}$. coefficient of $X^{\alpha+\beta}$ in fg is not divided by p_k . Therefore $fg \neq 0$ in $\mathbb{Z}_n[X]$. Hence f and g are not adjacent.

Thus we conclude that
$$\chi(\Gamma(\mathbb{Z}_n[X])) = r$$
.

We denote the set of nonnegative integers by \mathbb{N}_0 .

Lemma 3.3. If n is a multiple of the square of a prime, then $\Gamma(\mathbb{Z}_n[X])$ has an infinite clique.

Proof. Suppose that n is a multiple of the square of a prime.

Case 1. $n = p_1^{2a_1} \cdots p_r^{2a_r}$ for distinct primes p_1, \ldots, p_r and positive integers a_1,\ldots,a_r . In this case, let $C = \{\sqrt{n}X^m \mid m \in \mathbb{N}_0\}$. Then the product of any two elements of C is zero in $\mathbb{Z}_n[X]$; so C is an infinite clique of $\Gamma(\mathbb{Z}_n[X])$.

Case 2. $n = p_1^{2a_1} \cdots p_r^{2a_r} q_1^{2b_1+1} \cdots q_s^{2b_s+1}$ for distinct primes $p_1, \ldots, p_r, q_1, \ldots, q_s$ and nonnegative integers $a_1, \ldots, a_r, b_1, \ldots, b_s$, not all zero. In this case, let $k = p_1^{a_1} \cdots p_r^{a_r} q_1^{b_1+1} \cdots q_s^{b_s+1}$ and let $C = \{kX^m \mid m \in \mathbb{N}_0\}$. Then the product of any two elements of C is zero in $\mathbb{Z}_n[X]$; so C is an infinite clique of $\Gamma(\mathbb{Z}_n[X])$.

By Cases 1 and 2, $\Gamma(\mathbb{Z}_n[X])$ has an infinite clique.

Proposition 3.4. Let n be a multiple of the square of a prime. Then $\chi(\Gamma(\mathbb{Z}_n[X])) = \infty.$

Proof. By Lemma 3.3, $\Gamma(\mathbb{Z}_n[X])$ has an infinite clique; so $cl(\Gamma(\mathbb{Z}_n[X])) = \infty$. Thus $\chi(\Gamma(\mathbb{Z}_n[X])) = \infty.$ \square

By Propositions 3.2 and 3.4, we obtain the main result in this section.

Theorem 3.5. The following statements hold.

(1) $\chi(\Gamma(\mathbb{Z}_n[X])) = r$ if (and only if) $n = p_1 \cdots p_r$ for some distinct primes p_1, \ldots, p_r .

(2) $\chi(\Gamma(\mathbb{Z}_n[X])) = \infty$ if (and only if) n is a multiple of the square of some prime.

Figure 3: The coloring of some zero-divisor graphs

Acknowledgements. We would like to thank the referee for several valuable suggestions.

References

- D. F. Anderson, M. C. Axtell, and J. A. Stickles, Jr, Zero-divisor graphs in commutative rings, Commutative Algebra: Noetherian and Non-Noetherian Perspectives, 23–45, Springer, New York, 2011.
- [2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(1999), 434–447.
- [3] D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra, 159(1993), 500-514.
- [4] M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra, Addison-Wesley Series in Math., Westview Press, 1969.
- [5] M. Axtell, J. Coykendall, and J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Comm. Algebra, 33(2005), 2043–2050.
- [6] I. Beck, Coloring of commutative rings, J. Algebra, 116(1988), 208–226.
- [7] D. E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc., 27(1971), 427–433.
- [8] S. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra, 30(2002), 3533– 3558.
- [9] S. J. Pi, S. H. Kim, and J. W. Lim, The zero-divisor graph of the ring of integers modulo n, Kyungpook Math. J., 59(2019), 591–601.