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Abstract. Smoking is one of the main causes of health problems and continues to be

one of the world’s most significant health challenges. In this paper, we use the multi-step

Adomian decomposition method (MSADM) to obtain approximate analytical solutions

for a mathematical fractional model of the evolution of the smoking habit. The proposed

MSADM scheme is only a simple modification of the Adomian decomposition method

(ADM), in which ADM is treated algorithmically with a sequence of small intervals (i.e.

time step) for finding accurate approximate solutions to the corresponding problems. A

comparative study between the new algorithm and the classical Runge-Kutta method is

presented in the case of integer-order derivatives. The solutions obtained are also presented

graphically. The results reveal that the method is effective and convenient for solving lin-

ear and nonlinear differential equations of fractional order.

1. Introduction

Fractional order ordinary differential equations, as generalizations of classical
integer order ordinary differential equations, are increasingly used to model prob-
lems in fluid flow, mechanics, viscoelasticity, biology, physics, engineering and other
applications [17, 9]. Fractional differential equations are the result of mathematical
modeling of complex processes and phenomena. The most fundamental character-
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istic of these models is their nonlocal characteristic which does not exist in the
differential operators of integer order. This property means that the next aspect of
a model relates not only upon its present state but also upon all of its history. As a
consequence, there is an already very large, and still growing, number of scientific
and engineering problems involving fractional derivatives. The fractional calcu-
lus (that is, derivatives and integrals of any real or complex order) will perhaps
be the calculus of the twenty-first century [3, 12, 22, 24]. The solutions of frac-
tional differential equations are quite involved. In general, there exists no method
that yields exact solutions to fractional differential equations. Only approximate
solutions can be derived. Several methods have been used to solve fractional dif-
ferential equations, such as Laplace transform method [18, 20], Fourier transform
method [14], homotopy perturbation method [19, 25], homotopy analysis method
[2, 28, 27], Adomian decomposition method [1, 5, 13, 21] and differential transform
method [6, 7, 8]. In this paper, we investigate the applicability and effectiveness of
ADM when treated as an algorithm with a sequence of intervals (i.e. time step) for
finding accurate approximate solutions to a time-fractional epidemic model for the
habit of smoking in a community in Spain. This modified method is named as the
multi-step Adomian decomposition method. It can be found that the corresponding
numerical solutions obtained by using ADM are valid only for a short time. While
the ones obtained by using MSADM are valid and more accurate over a longer time.
The agree closely with the RK4-5 numerical solutions in the case of integer-order
systems.

Smoking is the leading cause of preventable death, and is estimated to kill
more than 5 million people worldwide each year. This number is expected to grow.
Smoking or tobacco is a known or probable cause of cancers of the oral cavity,
larynx, lung, oesophagus, bladder, pancreas, renal pelvis, stomach, and cervix.
Smoking is also a cause of heart disease, strokes, peripheral vascular diseases, chronic
obstructive lung diseases and other respiratory diseases, and low-birth weight babies
[15].

There have been several attempts [16, 26], since the 2000s, to mathematically
model the effort to give up smoking. In 2000, Castillo-Garsow et al. [4] proposed a
simple mathematical model for giving up smoking. The fact that epidemic models
consist of a system of non-linear differential equations underlines the importance of
having reliable methods for solving them. This type of model can be integrated using
any standard numerical method. However, it is known that these algorithms are
subject to problems such as numerical instabilities, oscillations or false equilibrium
states. This means that the numerical solution may not correspond to the real
solution of the original system of differential equations. This is the reason why
we are interested in obtaining a continuous solution in the form of an analytical
approximation to the real solution. The epidemic model for smoking is a system
of non-linear differential equations without closed solution. The interest of this
fractional model is that it has been able to describe the general evolution of the
spread of smoking. It was constructed using real data for the initial values and
for the parameters of the system. Constant population is assumed by taking birth
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and death rates equal and different from zero. The structure of this paper is as
follows. In Section 2, we present some necessary definitions and notation related to
fractional calculus. In Section 3, we construct the general form of MSADM for a
system of fractional differential equations. In Section 4, we describe the MSADM
of system of a time-fractional epidemic model for smoking in a community and
numerical simulations are presented graphically. Finally, we make our conclusions
in Section 5

2. Preliminaries

In this section, we introduce the linear operators of fractional integration and
fractional differentiation in the framework of the Riemann-Liouville and Caputo
fractional calculus.

Definition 2.1. A real function f(t), t > 0, is said to be in the space Cµ, µ ∈ R if
there exists a real number p > µ such that f(t) = xpf1(t), where f1(t) ∈ C[0,∞).
Clearly Cµ ⊂ Cβ if β ≤ µ.

Definition 2.2. A function f(t), t > 0, is said to be in the space Cmµ , m ∈ N∪{0},
if f (m) ∈ Cµ.

Definition 2.3. The left sided Riemann-Liouville fractional integral operator of
order α ≥ 0 of a function f ∈ Cµ, µ ≥ −1, is defined as

Jαf(t) =
1

Γ(α)

t∫
0

f(τ)

(t− τ)1−α
dτ, α > 0, t > 0,

J0f(t) = f(t).

Definition 2.4. Let f ∈ Cm−1 for m ∈ N ∪ {0}. The Caputo fractional derivative
of f(t) is defined by

Dα
∗ f(t) =

{ [
Jm−αf (m)(t)

]
, m− 1 < α < m, m ∈ N,

dmf(t)
dtm , α = m.

Hence, we have the following properties [9, 17]

JαJνf = Jα+νf, α, ν ≥ 0, f ∈ Cµ, µ ≥ −1.

Jαtγ =
Γ(γ + 1)

Γ(α+ γ + 1)
tγ+α, α > 0, γ > −1, t ≥ 0.(2.1)

JαDα
∗ f(t) = f(t)−

m−1∑
k=0

f (k)(0+)
tk

k!
, t > 0, m− 1 < α ≤ m.
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3. Multi-step Adomian Decomposition Method

The ADM is used to provide approximate solutions for nonlinear problems in
the form of convergent series with easily computable components. It has been shown
that the approximated solution obtained by this method are not always valid for
large t. Therefore we use the MSADM, which offers an accurate solution over a
greater range of t than does the ADM [13]. In this section we construct the general
form of the MSADM. For this purpose, consider the fractional system of differential
equations

(3.1) Dαixi(t) = Ni(t, x1(t), ..., xr(t)), t ≥ 0, 0 < αi ≤ 1,

subject to the initial conditions

(3.2) xi(0) = di, i = 1, 2, ..., r,

where (Ni(t, x1(t), ..., xr(t)), i = 1, 2, ..., r) are linear/nonlinear functions of
t, x1(t), ..., xr(t). We employ MSADM to solve the system of equations (3.1), (3.2).
Let [0, T ] be the interval over which we want to find the solution of the initial value
problem (3.1), (3.2). Assume that the interval [0, T ] is divided into n subintervals
∆t, [t0, t1], [t1, t2], [t2, t3], ..., [tn−1, tn] of equal length with t0 = 0 and tn = T .
Let t∗ be the initial value for each subintervals and let xi,j(t) for i = 1, 2, ..., r
be approximate solutions in the subinterval [tj−1, tj ] for j = 1, 2, ..., n, with initial
guesses

(3.3) xi,1(t∗) = di and xi,j(t
∗) = Xi,j(tj−1) = Xi,j−1(tj−1)

where Xi,j(t) will be constructed later in equatiuon (3.15). Now, we can construct
deformation equations of the system (3.1) by setting

(3.4) Dαixi,j(t) = Ni,j(t, x1,j(t), . . . , xr,j(t))

for all 0 < αi ≤ 1, i = 1, 2, . . . , r, and j = 1, 2, ..., n. Applying Jαi to both the sides
of (3.4), we get

(3.5) xi,j(t) = xi,j(t
∗) + JαiNi,j(t, x1,j(t), . . . , xr,j(t)).

We employ the Adomian decomposition method to solve the systems of equations
(3.4) [13]. For all i = 1, 2, . . . , r and j = 1, 2, ..., n, let

(3.6) xi,j(t) = xi,j(t
∗) +

∞∑
m=1

xi,j,m(t),

and

(3.7) Ni,j(t, x1,j(t), . . . , xr,j(t)) =

∞∑
m=0

Ai,j,m,
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where Ai,j,m is an Adomian polynomial which depends on xi′,j,m′ for i′ = 1, . . . , r
and m′ = 0, . . . ,m. In view of Eqs. (3.6) and (3.7), the equation (3.5) takes the
form

∞∑
m=0

xi,j,m(t) = xi,j(t
∗) + Jαi

∞∑
m=0

Ai,j,m(x1,j,0, ..., x1,j,m, x2,j,0, ...

(3.8) , x2,j,m, ..., xr,j,0, ..., xr,j,m), i = 1, 2, . . . , r, j = 1, 2, ..., n,

We set
xi,j,0(t) = xi,j(t

∗),

and

xi,j,m+1(t) = JαiAi,j,m(x1,j,0, ..., x1,j,m, x2,j,0, ..., x2,j,m, ..., xn,j,0, ...

(3.9) , xn,j,m), i = 1, 2, . . . , r, j = 1, 2, ..., n, m = 0, 1, ...

In order to determine the Adomian polynomials, we introduce a parameter λ, so
(3.7) becomes

(3.10) Ni,j(t,

∞∑
m=0

x1,j,mλ
m, . . . ,

∞∑
m=0

xr,j,mλ
m) =

∞∑
m=0

Ai,j,mλ
m,

Let xi,jλ(t) =
∞∑
m=0

xi,j,mλ
m, then

(3.11) Ai,j,m =
1

m!

dm

dλm
Ni,jλ(t, x1,jλ, ..., xr,jλ)|λ=0,

where

(3.12) Ni,j,λ(t, x1,j , ..., xr,j) = Ni,j(t, x1,jλ, ..., xr,jλ).

In view of (3.11), (3.12) we get

Ai,j,m =
1

m!

dm

dλm
[Ni,jλ(t, x1,jλ(t), ..., xr,jλ(t))]λ=0

=
1

m!

dm

dλm
[Ni,j(t,

∞∑
m=0

x1,j,mλ
m, ...,

∞∑
m=0

xr,j,mλ
m)]λ=0(3.13)

= [
1

m!

dm

dλm
Ni,j(t,

∞∑
m=0

x1,j,mλ
m, ...,

∞∑
m=0

xr,j,mλ
m)]λ=0.
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Hence (3.9), (3.13) lead to the following recurrence relations:

xi,j,0(t) = xi,j(t
∗),

xi,j,m+1(t) = Jαi [
1

m!

dm

dλm
Ni,j(t,

∞∑
m=0

x1,j,mλ
m, ...,(3.14)

∞∑
m=0

xr,j,mλ
m)]λ=0,m = 0, 1, 2, ...

We can approximate the solution xi,j(t) by the truncated series

fi,j,k =

k−1∑
m=0

xi,j,m(t), lim
k−→∞

fi,j,k = xi,j.

For the convergence of the above method, if system (3.1) admits a unique solution,
then the method will produce the unique solution and If the system (3.1) does
not admit a unique solution, the decomposition method will give a solution among
many (possible) other solutions [1]. The solutions of system (3.1) in each subinterval
[tj−1, tj ], j = 1, 2, ..., n, has the form

(3.15) Xi,j(t) =

K∑
m=0

xi,j,m(t− tj−1), i = 1, 2, . . . , r, j = 1, 2, ..., n,

and the solution of system (3.1) in the interval [0, T ] is given by

(3.16) xi(t) =

n∑
j=1

χvXi,j(t), i = 1, 2, . . . , r,

where

χv =

{
1, t ∈ [tj−1, tj ],
0, t /∈ [tj−1, tj ].

4. Numerical Results

This model was presented in [10, 11, 23] to describe and predict the evolution
of the habit of smoking in Spain and to quantify the impact of Spanish smoke-free
policies. Smoking has traditionally been modeled by ordinary differential equa-
tions. The following system of ordinary differential equations models the dynamics
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between the different subpopulations considered.

dn

dt
− µ(1− n) + βn(s+ c) = 0,

ds

dt
− βn(s+ c)− ρe− ηc+ (γ + λ+ µ)s = 0,

dc

dt
− γs+ (η + δ + µ)c = 0,(4.1)

de

dt
− λs− δc+ (ρ+ µ)e = 0.

The subpopulations included in the model are: n is the proportion of the total
population who has never smoked, s is the proportion of people who smoke less
than 20 cigarettes per day, c is the proportion of individuals who smoke more than
20 cigarettes per day and e is the proportion of ex-smokers. The parameter µ
denotes birth rate in the community; β denotes the transmission rate due to the
social pressure to adopt smoking habit; ρ expresses the rate at which ex-smokers
return to smoking; η is the rate at which an excessive smoker becomes a normal
smoker by decreasing the number of cigarettes per day; γ is the rate at which
normal smokers become excessive smokers by increasing the number of cigarettes
per day; λ denotes the rate at which normal smokers stop smoking and δ is the rate
at which excessive smokers stop smoking. The population is constant and it has
been normalized to unity, so

(4.2) n+ s+ c+ e = 1,

for any instant of time. The objective of the present paper is to use the MSADM
to obtain the approximate solution of the following time-fractional epidemic model
for smoking:

Dα1
∗ n(t)− µ(1− n(t)) + βn(t)(s(t) + c(t)) = 0,

Dα2
∗ s(t)− βn(t)(s(t) + c(t))− ρe(t)− ηc(t) + (γ + λ+ µ)s(t) = 0,

Dα3
∗ c(t)− γs(t) + (η + δ + µ)c(t) = 0,(4.3)

Dα4
∗ e(t)− λs(t)− δc(t) + (ρ+ µ)e(t) = 0,

subject to the initial conditions

(4.4) n(0) = n0, s(0) = s0, c(0) = c0, e(0) = e0,

In order to perform the resumption methods, we set the values of the parameters
as in [4]: µ = 0.01, β = 0.0381, ρ = 0.0425, η = 0.1244, γ = 0.1175, λ = 0.0498 and
δ = 0.0498. Moreover, The initial conditions are chosen as: n(0) = 0.5045, s(0) =
0.2059, c(0) = 0.1559 and e(0) = 0.1337.
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In order to solve the system (4.3), (4.4), we define the nonlinear terms by

N1,j(λ) = µ(1− nj(λ))− βnj(λ)(sj(λ) + cj(λ))

=

∞∑
m=0

A1,j,m,

N2,j(λ) = βnj(λ)(sj(λ) + cj(λ)) + ρej(λ) + αcj(λ)

−(γ + λ̆+ µ)sj(λ) =

∞∑
m=0

A2j,m,

N3,j(λ) = γsj(λ)− (α+ δ + µ)cj(λ))

=

∞∑
m=0

A3,j,m,(4.5)

N4,j(λ) = λ̆sj(λ) + δcj(λ)− (ρ+ µ)cj(λ))

=

∞∑
m=0

A4,j,m, j = 1, 2, 3, ..., n,

where

nj(λ) =

K∑
m=0

nj,m(t)λm,

sj(λ) =

K∑
m=1

sj,m(t)λm,

cj(λ) =

K∑
m=1

cj,m(t)λm,

ej(λ) =

K∑
m=1

ej,m(t)λm,

and

Ai,j,m =
1

m!

dm

dλm
[Ni,j(λ)]λ=0, i = 1, 2, 3, 4, j = 1, 2, ..., n, m = 1, 2, ...,K.

So in this case we have to satisfy the initial condition at each of the subintervals.
Accordingly, the initial values will be changed for each subinterval, i.e.

n1(t∗) = 0.5045, nj(t
∗) = nj(tj−1) = nj−1(tj−1),

s1(t∗) = 0.2059, sj(t
∗) = sj(tj−1) = sj−1(tj−1)

c1(t∗) = 0.1559, cj(t
∗) = cj(tj−1) = cj−1(tj−1)(4.6)

e1(t∗) = 0.1337, ej(t
∗) = ej(tj−1) = ej−1(tj−1),

j = 1, 2, 3, ..., n.



Multi-step Adomian Decomposition Method 761

Where t∗ is the initial value for each subintervals. The Adomain decomposition
series (3.9) leads to the following scheme:

nj,0 = nj(t
∗), nj,m+1 = Jα1A1,j,m,

sj,0 = sj(t
∗), sj,m+1 = Jα2A2,j,m,

cj,0 = cj(t
∗), cj,m+1 = Jα3A3,j,m,

ej,0 = ej(t
∗), ej,m+1 = Jα4A4,j,m,

j = 1, 2, 3, ..., n, m = 0, 1, 2, ...K.

The solutions of system (4.3), (4.4) in each subinterval [tj−1, tj ], j =
1, 2, ..., n, has the form

Nj(t) =

K∑
m=0

nj,m(t− tj−1),

Sj(t) =

K∑
m=0

sj,m(t− tj−1),

Cj(t) =

K∑
m=0

cj,m(t− tj−1),(4.7)

Ej(t) =

K∑
m=0

ej,m(t− tj−1), j = 1, 2, ..., n,

and the solution in the interval [0, T ] is given by

n(t) =

n∑
j=1

χvNj(t),

s(t) =

n∑
j=1

χvSj(t),

c(t) =

n∑
j=1

χvCj(t),(4.8)

e(t) =

n∑
j=1

χvEj(t).

System (4.3) with transformed initial conditions were solved analytically using the
MSADM and numerically using the classical Runge Kutta method in the case of
integer-order derivative. To demonstrate the effectiveness of the proposed algorithm
as an approximate tool for solving the nonlinear system of fractional differential
equations (4.3) with initial conditions (4.4) for larger t, we use a small time step.
We assume that the optimal campaign continues for 200 days, so apply the proposed
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Figure 1: Comparing the result of the MSADM; dotted line, the RK4; solid
line, the numerical solution of the system with α1 = α2 = α3 = α4 = 1

algorithm on the interval [0, 200]. We choose to divide the interval [0, 200] into
subintervals with time step ∆t = 1 and we get the ADM solution at each subinter-
val. All the results are calculated using the computer algebra package Mathematica.
Fig 1 shows the phase portrait for the classical model of smoking using the MSADM
(when α1 = α2 = α3 = α4 = 1) and the fourth-order Runge–Kutta method (RK4).
From the graphical results in Fig.1, it can be seen the results obtained using the
MSADM match the results of the RK4 very well, which implies that the MSADM
can predict the behavior of these variables accurately for the region under consid-
eration. Figs. 2 and 3 show the phase portrait for the fractional-order model of
smoking obtained for different values of α( α1, α2, α3, α4) using the MSADM.

4. Conclusions

The analytical approximations to the solutions of the model for the habit of
smoking habit are reliable and confirm the power and ability of the MSADM as
an easy device for computing the solution of nonlinear problems. In this paper,
a fractional differential model of smoking is studied and its approximate solution
is presented using a MSADM. Comparisons of the results obtained by using the
MSADM with that obtained by the classical Runge–Kutta method in the integer
case reveal that the approximate solutions obtained by ADM are only valid for a
small time, while the ones obtained by MSADM are highly accurate and valid for a
long time. The reliability of the method and the reduction in the size of computa-
tional domain give this method a wider applicability. Finally, the recent appearance
of nonlinear fractional differential equations as models in fields such as science and
engineering motivates investigating various solutions methods for such equations.
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Figure 2: Phase plot of n(t), s(t), c(t) and e(t), with α1 = α2 = α3 = α4 =
0.95

Figure 3: Phase plot of n(t), s(t), c(t), and e(t), with α1 = α2 = α3 = α4 =
0.001
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We hope that this work is a step in this direction.
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