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ABSTRACT. In this paper, we obtain an analytical solution for an unsolved definite inte-
gral Re¢(m,n) from a 1915 paper of Srinivasa Ramanujan. We obtain our solution using
the hypergeometric approach and an infinite series decomposition identity. Also, we give
some generalizations of Ramanujan’s integral Rc(m,n) defined in terms of the ordinary
hypergeometric function 2 F3 with suitable convergence conditions. Moreover as applica-
tions of our result we obtain nine new infinite summation formulas associated with the
hypergeometric functions oFi, 1 F2 and 2 F3.

1. Introduction and Preliminaries

In the literature of infinite Fourier cosine transforms (see, for example, [2, 4])
2V~ cos(zy)

exp(bx) £ 1
zeta function, the Psi (Digamma) function, hyperbolic functions and Beta functions.

o0
one can find analytical solutions of / dz given in terms of Riemann’s
0
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The analytical solution of the following integral of Ramanujan [7, p. 85, eq.(49)]:

(1.1) Reo(m,n) = /000 mdaj,

is not known for all positive rational values of n, and non-negative integral values
of m; though for three particular pairs or values of m and n the following solutions
are given in [7, p.86, eq.(50)]:

x cos( ) dr — 13 —4n

(1.2) Re(1,1/2) = /OOO exp (2myz) — 1 8m2

*  xcos(2mx 1 /1 5
(1.3) Re(1,2) = /0 exp(27ri/:f))—1dx =&l <2 -4 7T2) ,

3
T

22 cos(2mx) 1 5 5
1.4 Ro(2,2) = ————dr=—(1—-—+—=|.
(14) c(2,2) /0 exp (2m/z) — 1" 256( 7T+7r2)

The following theorem is proved by Ramanujan |7, p.76-77, eqs.(10 and 10')]:
If

(15) Re(Om) = a(n) = [~ ) .
and

(1.6) Y(n) = ﬁ + /OOO (mc@,
then

(17) Ro(0n) = 2(n) = -4/ (2) 1 (3) - v
and

(1.8) Y(n) = % (Z) o (i) +®(n),

where n is positive rational number.
For particular values of n, Ramanujan [7, p.85, eq. (48)] also showed the fol-
lowing:

R I IR =
(1.10) Rc(0,2) = ©(2) = /OOO (mm - Tlc;’
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(1.11) Rc(0,4) = @(4) = /OOO eXpC(C;S;E%)_ 1= : ;2\/5’
(1.12) Rc(0,6) = ®(6) = /OO" ech(;i%) Cdo = 13 14111\/57
(1.13) Re(0,1/2) = @ (;) = /OOO ex;(zi(\/g;))_ldx -5
(1.14) Rc(0,2/5) =@ @) = /Ooo expcz);;j%)_ pdv = : 712\/5'

A natural generalization of Gauss hypergeometric series o F} is the general hyper-
geometric series ,Fy 9, p.42, eq.(1)] and see also [1] with p numerator parameters
a1, ..., and ¢ denominator parameters fi,...,8,. For p,q € Ny := NU {0} =
{0,1,2,...}, it is defined as

QL enny QA B L (a1)ne () 2"
(1.15) ”F"( ﬂl,...,ﬁ:; Z>_§(Bl)n...(ﬁ:) nl’

n

where a; € C for i = 1,...,p and §; € C\ Z;. Here we use Z; := {0,—1,-2,...}.
Also for A\, v € C, Pochhammer’s symbol ()),,,(or the shifted factorial, since (1), =
n!) is defined, in general, by

(1.16)  (\)y := FA+ov) _ {L (v="0; AeC\{0})

(N AA+1D)..A+n—-1), (v=neN; rxe().

The hypergeometric series ,F, in eq.(1.15) is convergent for |z| < oo if p < ¢, and
for |z] <1ifp=gqg+1.
Furthermore, if we set

q p
(1.17) w=| > 8-> ail,
j=1 i=1

it is known that the series ,Fy, with p = ¢+ 1, is

(i) absolutely convergent for |z| = 1 if Re(w) > 0,

(ii) conditionally convergent for |z| =1,z # 1, if =1 < Re(w) < 0.
Also the binomial function is given by

(1.18) (1-2)""=1F < i z) = i (@n

|
ne0 n!

where |z| <1, a € C\ Z, .
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The Fox-Wright function , ¥, from [11, 12] is given by

Ay), ... Ap);
(1.19) , 7, EZjBﬂ((ngﬁ)

:| N i I‘(a1 + kAl)F(OZp + kAp) i
4~ T(B1 +kBy)..T (B, + kB,) k!’

_ [(ay)...T(ayp) i (@1)ka, - (op)ka, 2*
L(81)--L(Bq) &= (B1)rs,---(Bg)kn, K
_ Tle)-Tlay) o[ (an,Ar)s s (0p, Ap);
(1.20) = T T(3,) " e { (B1. B1)s o (By By): )
L) []r(ei - AiQ)
(1.21) = %/L =L (—2)~%d¢ ,
[T - B0
j=1

where we have p = v/—1, and z, a;, B; € C everywhere; and A;, B; € R\ 0 except

in the case of (1.21) where we have A;,B; € Ry = (0,400) In eq. (1.19), the

parameters o, 3; and coefficients A;, B; are adjusted in such a way that the product

of the Gamma functions in numerator and denominator should be well defined.
Suppose:

q p
(1.22) A=Y B =Y A,

=1 =1
q

(1.23) 5 = (H |Ai A) 111817,

i=1 j=1

q P p—g
(1.24) u—2@2%+(2)

Jj=1 =1

and
(1.25) c"=14+A1+..+4,)—(B1+..+By) =1—- A"

Then we have the following convergence conditions of (1.19) and (1.21):
Case(1): When the contour (L) is a left loop beginning and ending at —oo, then
»Yq[], given by (1.19) or (1.21), converges under any of the following conditions.

i > —1,and 0 < |z| < 0.

) AT
ii) A*=—1and 0 < |z| < §*
) A" =—1, |z| = 6%, and Re(p*) > 3.

111
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Case(2): When the contour (L) is a right loop beginning and ending at 400, then
»¥ql], given by (1.19)or (1.21), converges under the following conditions.

iv) A* < —1,and 0 < |z]| < 0.

v) A*=—1,and |z| > 0*.

vi) A* = —1, 2] = 6*, and Re(p*) > 1.
Case(3): When contour (L) is starts at v — ico and ends at v + ioco where v € R,
then ,¥,[] is also convergent under the following conditions.

vil) 0% >0, |arg(—z)| < Fo*, and 0 < |z| < oo.
vili) ¢* =0, arg(—z) =0, 0 < |2| < 0o and —yA* + Re(u*) > 5 +7.
ix) v=0,0"=0,arg(—z) =0, 0 < |z| < 00, and Re(u*) > 3.

The infinite Fourier cosine transform of g(x) over the interval (0, 00) is defined by
(126 Felglai) = [ gl@)oos(on)do = Gely), (v >0),
0

2 o0
It follows that we have g(z) = F5'[Gc(y); z] = f/ Ge(y) cos(zy)dy.

Note that some authors add an extra factor of \/7 in their definition of Fo{g(x); y}.

If b > 0and 0 < Re(s) < 1, then the Mellin-transform of cos(bz) or infinite Fourier
Cosine transform of x5! [3, p.42, egs.(5.2)] is given by

(1.27) /000 2°~ ! cos(bx)dz = w_

If Re(u) > —1,0 <€ < 1,a > 0and y > 0, then we can prove the following integral
using Maclaurin’s expansion of exp(—ax®) and integrating termwise with the help
of the result (1.27):

(1.28)

/000 zH exp(—az®) cos(zy)dr = —y H71 Z ( e ) T(u+1+E0) bln{g(u + §€)} .

An infinite series decomposition identity [8, p.193,eq.(8)] is given by

oo N-1 e
(1.29) doaw) =Y {ZQ N+ ) }
£=0 j=0 Le=0
where N is an arbitrary positive integer. Put N = 4 in the above eq. (1.29), we get

(1.30) iQ i{iﬂ Al + ) }

£=0 7=0
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(1.31) :i@(4£)+i9(4@+1)+i9(4@+2)+i9(4@+3),
=0 =0 £=0 =0

provided that all involved infinite series are absolutely convergent.
For every positive integer m [9, p.22, eq.(26)], we have

(1'32) (A)mn =m 1_[1 <1:)]1> ;m e N n e Ng.
j= n

From the above result (1.32) with A = mz, it can be proved that

(1.33) I'(mz) = (2w)(1;m>mmz_% | I r (z +I1—= 1) , mzeC\Z,
m
i=1

Equation (1.33) is known as the Gauss-Legendre multiplication theorem for the
Gamma function. Elementary trigonometric functions [9, p.44, eq.(9) and eq.(10)]
are given by

L2
(1.34) cos z = ol ( ' Z) ,

L.

2 4

=22
(1.35) sin z =z oF1 < 3 ) .

2 4
The Lommel function [9, p.44, eq.(13)] is given by
ZhF1 1, —22

1.36 Spw(z) = F —u vi3. )
R EC R s e (L (PR

where p+v € C\ {-1,-3,-5,-7,...}.

As we have mentioned, no general analytic solution is known for R¢(m,n).
Motivated by the work done in [10, 5] our aim in this paper is to give an analytical
solution of Ramanujan’s integral in terms of ordinary hypergeometric functions.

Here in this paper, we have generalized Ramanujan’s integral R (m,n) in the
following forms, where {©(k)}7, is a bounded sequence, and obtain analytical
solution for them:

(i) I&(v,b,c,\y) = Z [%/ xu7167<)‘b+6k)ﬁcos(xy)dx},
- Jo

. _ > v—1_—bA\/T (al,Al),...,(ar,Ar); —cvT
(ii) Jc(v,b,c,/\w)f/o z' e T\I/s[ (Bi. B, (8o, B); € cos(xy)dz,

(111) Ko(v,b,c,Ay) = / ZU7leib>\\/§'rFS ( A1y ey O P15 ey Bs 67C\/E) cos(zy)dz,
0
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(iv) Ic(v,b, A\ y) = /Oooacvfl{exp(b\/:?) — 1} cos(zy)dz,

Moreover, we show, in Sections 3-6, how the main general theorem given below can
be applied to obtain new interesting results by suitably adjusting the parameters
and variables.

2. Main General Theorem on Infinite Fourier Cosine Transform

Suppose {O(k)}52, is a bounded sequence of arbitrary real and complex num-
bers, and and Re(v), ¢, y, are positive and A and b are both positive or both negative,
then

(2.1)
I (v, b,e, N y) = Z [@(k / z”le(’\b“k)ﬁcos(xy)dz] ,

— L k!
> > )\b—i—ck)‘l“( +3) vr A
(2.2) =y Y [ cos ( + ) ],

Now replacing £ by 4¢ + j, after simplification we get

(2.3)
[e%s} 3 .
. 7U )\b—|—ck)3 v+ v gm
fewbe Ay =y Z[ Z yz j! ( )COS <2+j4>
k=0 =0 H
r A( 2v+g)7 _1 ()\b)(/\b:-c)k 4
X ol'3 A*(41—|—j), 6 (%)k )
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_ QDN+ p)eos (3 + 5) §5 {@(k) ()
yv+2 P k! (%)k
4
20+1 2043, -1 ()\b)(Lf”")k }
X o F 4 2 4 c
R NN A S 64y2{ ()
2
_ QORI+ Dsin () g T [ (]
2y1)+1 P k! (%)k
4
vl w42, _q ()\b)(AbJrC)k }
X F 20 23) Y c
S N P 641/2{ (25
: : VT s o0 c 3
N (AD)*T (v + 2) sin (& +1) 5 {@({g) (”;T:)k y
6yv+§ o k! (?)k
4
2v43 2v45. A\b)(2bte
X oF3 5437 71 12 ( )(Abc e }
D o2q 3 64y (% )k

Our result (2.3) or (2.4) or (2.5) is convergent in view of the convergence condition
of ,Fy(-), when p < ¢, and V |z| < 0.

Proof. The result (2.2) is obtained by the application of the integral (1.28) [with
substitutions g = v — 1,a = Ab + ¢k, & = %] in the R.H.S. of eq.(2.1). The results
(2.3), (2.4) and (2.5) are obtained by using the infinite series decomposition for-
mulas (1.30),(1.31), Pochhammer’s identity (1.32) and other algebraic properties of
Pochhammer’s symbols.

3. Infinite Fourier Cosine Transforms of zV~!e™"*V® ¥ [] and "~ le V=, F,(.)

F(Oq + kAl)F(OéT + k‘AT) .

If t k) = for k=0,1,2,3,... th -
we put O(k) (3 £ hB). T + kB, or ,1,2,3, ..., in the equa

tions (2.1) and (2.3), then after simplification we get the following:

(3.1)

o Ao (amy Ay);
J 7b, ,A, —_ v—1 b/\ﬁrqjg (0417 1)y ey ry4dr )y c/T d ,
C(U ¢ y) A . c ’ (61731)7“'7(55738); c COS(xy) *
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o[ T + kA T(ar + kA,) < )\b+ck)JF(v+ 1)
32) =y [ X
( ) kZ:O (ﬁ1+k81) /Bé+kB k'jz: yz ]'
4
N A (2;254) L (AD) (259
xc05(2—|—4>2F3 A* (414 5); 6dy (¥)k )

where Re(v), ¢, y, are positive, A and b are both positive or both negative, o, 5; € C
and A;, B; e R\{0} fori =1,2,...,7and j = 1,2, ..., s, and ,U,[-] is the Fox-Wright
psi function of one variable subject to suitable convergence conditions derived from
the convergence conditions for (1.19),(1.20) and (1.21) given in Case(1) or Case(2)
or Case(3).

When N is a positive integer then A(N;\) denotes the array of N parameters

given by % A AH,..., M. When N and j are independent variables then the
notation A(N j+1) denotes the set of N parameters given by 31‘\‘}1, 31"\’,2,..., %

When j is dependent variable that is j = 0,1,2,3,..., N — 1, then the asterisk in
A*(N;j + 1) represents the fact that the (denominator) parameters & is always
omitted (due to the need of factorial in denominator in the power series form of
hypergeometric function) so that the set A*(N;j+1) obviously contains only (N—1)

parameters [9, Chap.3, p.214].
Remark 3.1. When A =... = A, =By =... =B, =11n (3.1), (3.2) then we get

(3.3) KC(U,b,c,/\,y):/ x“leb’\ﬁrFs< gl’""gr.; ecﬁ> cos(zy)dz,
0 1y--29 sy

ko
~—
o
—

AT (ke (o —1)7(\b+ ck)? T (v + 1) L
(34) =y Z [(51)1k._.(5s)k Ll ' cos (2+ )

5 4l
k=0 " j=0 yzJ:

A(? 2v+g)7 -1 ()\b)()\bc-i-c>k 4
AT ) oy { =)

c

where Re(v), ¢,y, are positive, A and b are both positive or both negative, r < s+1,
and a;,3; € Cfori=1,2,...,7rand j =1,2,..

. 8.

4. Fourier Cosine Transform of v~ {exp (by/z) — 1}~

For the generalization Io(v, b, A, y) of Ramanujan’s integral R (m,n) in terms
of ordinary hypergeometric functions o F3, the following holds:

2V~ cos(zy)

(4.1) Ic(v,b, A y) Toxp (bv/z) — 11

dx,
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Coom [ W= (D) b+ bR)T (v + £ or b
(4.2) =y Z[(k),kz ey ( )COS<2+4)]»

> 3 J iT(v+4 (3 X
(43) va[(A)kz(_l) ()‘b+bk) F( +2) cos (+])

! i
k=0 k! j=0 y2 ! 2 4

X2F3< A22); 1 {(Ab)(xmk}“)],

A* (451 +7); 64y2 (M

o PO (G (171 {5 )]

DL+ F)cos (F+5) [+ 1 Zutl 203, 1 ((AD)A+ 1)) "
y > F( e }N

k
(Ab)2D(v + 1) sin () S [{(A+ 1)k} vl vt 1 (D) A+ 1Dk )”
2y Z[( F( { o }ﬂ

k=
M0)°T(v+ 3)sin (5 + 5) S~ [{OA+Di}* o (242,250 —1 [+ 1))’
" 6yo*2 {m{(x)k}f 0 A 64y2{ (Vs } }

5 3

47 2
where Re(v),y, A\, b > 0.
Proof. In eq.(2.1), put O(k) = (\)g and ¢ = b, we obtain

(4.5) Ic(v,b, N\ y) = / gV e AV {Z (A)ke(bk)‘/;} cos(zy)dz.
0

k=0

!
= K

Using the binomial expansion (1.18) in (4.5), after simplification we get (4.1). Equa-
tions (4.2), (4.3) and (4.4) are obtained from (2.2), (2.3) and (2.5) by putting
O(k) = (Mg and ¢ = b. O
5. Ramanujan’s Integral R¢(m,n)

The analytical solution of the integral R¢(m,n) is given by

(5.1) Re(m,n) = /OOO md%

(5.2)

o S (s ()]

=0
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(5.3)
o S [ A {FE 2N (o ()
on (35T = {6)))
A e (5 S {6
e (B e (T )

where m is a non-negative integer and n is positive rational number.

Proof. The results (5.1), (5.2), (5.3) and (5.4) are obtained from (4.1), (4.2), (4.3)
and (4.4) by putting v =m+1, b=27, A =1 and y = nw. o
6 Applications of Ramanujan’s Integrals

In this section we establish the following nine new infinite summation formulas
associated with hypergeometric series o F1, 1 F» and o F3:

w Elal i (2]
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RS
_ |
[a\}
— e 0 |k
_ |
4\|/ ~— NS ~—
N | ‘ \ I
= IF 2= I
—
al= I Ll Il
~— — { L—
Wiw —N & 771
, = —— Py P3
- ~ | = | i &2
7,41;%“ N—— ~ I~ njenl
M Wim N v a7 oIt Fim
< ~ — -
= 8 BRES &
N N — ol . Ry {7
— \H\jk olhol OIS R _.
T/n © | = - —_—— Ol
[ QD ~—~ [N == ~
= & A
Bl — — ~— 7 o
%8 7= » 1
olerie b R .
— s = == N mz,_
s7 Tz T2 Cm Ao
N . | \WN/\PK/ 175 (q\
< - A A f —
- —— [
, 1 a2 I
™
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(6.8) 2“%} 0F1< L 42{(32}7}
— 21 2 17

( 1
(o (7S] -

The results (6.1) to (6.3) are obtained by puttingm =1,n= 5 ; m=1,n=2 and
m = 2,n = 2 in the equations (5.1) and (5.4) and finally comparing with equations

793
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(1.2), (1.3) and (1.4). When m = 0 with n = 1, 2, 4, 6, %, % in the equations
(5.1) and (5.4) and comparing with equations (1.9), (1.10), (1.11), (1.12), (1.13)
and (1.14), we get the remaining results (6.4) to (6.9) respectively. In view of the
hypergeometric functions (1.34), (1.35) and (1.36), we can express the above results
(6.4) to (6.9) in terms of cosine, sine and Lommel functions. Our results (6.1) to
(6.9) are convergent in view of the convergence condition of ,F,(-) series, when

p < ¢, and for all |z| < co.

7. Conclusion

Here, we have described some infinite Fourier cosine transforms of Ramanu-
jan. Various Ramanujan integrals, which may be different from those of presented
here, can also be evaluated in a similar way. The results established above seem
significant. We conclude our observation by remarking that various new results
and applications can be obtained from our general theorem by appropriate choice
of parameters v, A, b, ¢,y and bounded sequence {O(k)}?°  in I (v, b, ¢, A, y). This
work is in continuation to our earlier work [6] on infinite Fourier sine transforms.
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