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Abstract. The objective of this study is to investigate η-Einstein solitons on (ε)-

Kenmotsu manifolds when the Weyl-conformal curvature tensor satisfies some geometric

properties such as being flat, semi-symmetric and Einstein semi-symmetric. Here, we dis-

cuss the properties of η-Einstein solitons on φ-symmetric (ε)-Kenmotsu manifolds.

1. Introduction

Hamilton proposed the use of an evolution expression, called Ricci flow, to prove
Thurston’s geometrization conjecture in three dimension. In 1982, he [11] popular-
ized concept of Ricci solitons on Riemannian manifold and proved that the solitons
moves under the Ricci flow simply by diffeomorphisms of the initial metric. This
indicates that Ricci solitons are stationary points of the Ricci flow, which is given
by

(1.1)
∂g

∂t
= −2Ric(g),

where g is the Riemannian metric, Ric is the Ricci tensor and t is time.

Definition 1.1. A Ricci soliton (g, V, λ) on a Riemannian manifoldM of dimension
n is defined by

(1.2) LV g + 2Ric+ 2λ = 0,
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where LV denotes the Lie derivative along the vector field V on M and λ is a real
scalar.

A Ricci soliton is said to be shrinking, steady or expanding according as λ <
0, λ = 0, or λ > 0, respectively. In particular, if λ < 0, then the soliton is called
shrinking and it generates an ancient self-similar solution to the Ricci flow with
finite extinction time [7]. If the vector field V is the gradient of a potential function
−ψ , where ψ is some smooth function ψ :M → R, then g is called a gradient Ricci
soliton and equation (1.2) assumes the form

(1.3) Hessψ +Ric+ λg = 0.

Here R represents a the set of real numbers and Hess is the Hessian of the poten-
tial function ψ. When ψ is constant, then the gradient Ricci soliton is simply an
Einstein manifold. Thus Ricci solitons are essentially a generalization of Einstein
metrics. An Einstein manifold with constant potential function is called a trivial
gradient Ricci soliton. Gradient Ricci solitons are an important part of Hamilto-
nian Ricci flow as they correspond to self-similar solutions, and they often arise as
singularity models. They are also linked to smooth metric measure spaces, since
equation (1.3) is equivalent to Ricψ = 0, where Ric is the ∞-Bakry-Emery Ricci
tensor. In physics, a smooth metric space (M, g, eψ, dvol) with Ricψ = λg is called
a quasi-Einstein manifold. Therefore it is crucial to investigate the geometry and
topology of Ricci and others solitons and their classifications.

Over the last couple of decades, many studies have analyzed self-similar solu-
tions of geometric flows. In 2016, Catino and Mazzieri developed the conception
of Einstein solitons [7], which generate self-similar solutions to the Einstein flow,
which is given by

(1.4)
∂g

∂t
= −2

(
Ric− σ

2
g
)
,

where σ is the scalar curvature of the Riemannian metric g. Interest in examining
this equation from different perspectives originated from modern physical problems.
In what follows, after describing the manifold of constant scalar curvature by the
continuation of η-Einstein solitons. If an η-Einstein soliton exists, it indicate that
the manifold is quasi-Einstein. It is known that the concept quasi-Einstein manifolds
arose during the study of exact solutions of the Einstein field equations in general
theory of relativity (GR) and also in modern particle physics (astrophysics, plasma
physics, nuclear physics etc).

On the other hand in 1971, Kenmotsu studied a class of contact Riemannian
manifolds satisfying certain conditions, the manifolds are refered to as Kenmotsu
manifolds [13]. Since then, Kenmotsu manifolds have been studied by many ge-
ometers. References [8, 10, 12, 15] and the references therein are instances of such
studies. In 1993, Bejancu and Duggal [2] introduced the concept of (ε)-Sasakian
manifold, and subsequently, Xufeng and Xiaoli [19] showed that these manifolds
are real hypersurface of indefinite Kaehlerian manifolds. Although the theory of
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(ε)-Kenmotsu manifolds was popularized by De and Sarkar [10],and they have es-
tablished the perseverance of almost contact structure with indefinite metrics.

Sharma [16] studied the axioms of the Ricci solitons on a contact Riemannian
manifold, and later, Nagaraja et al. [15] and researchers such as Bagewadi et al.
[1] extensively discussed Ricci solitons on Kenmotsu manifolds. In 2009, Cho and
Kimura [9] introduced the notion of η-Ricci solitons on real hypersurfaces of non-
flat complex space-forms. In addition, η-Ricci solitons on manifolds with different
structures [3, 5] have been studied by Blaga extensively. Furthermore, in 2018, Blaga
studied the notion of η-Einstein solitons [4]. Recently, Siddiqi likewise considered
some characteristics of η-Einstein solitons in [17, 18] which is closely related to this
subject. Motivated by the previous research, in the present study, we investigated
the geometric nature of η-Einstein soliton on an (ε)-Kenmotsu manifold.

2. Preliminaries

An n(= 2m+1)-dimensional smooth manifold (M, g) is said to be an (ε)-almost
contact metric manifold [6], if it admits a (1, 1)-tensor field ϕ, a structure vector
field ξ, a 1-form η and an indefinite metric g such that

(2.1) φ2E = −E + η(E)ξ, η(ξ) = 1,

(2.2) g(ξ, ξ) = ε, η(E) = εg(E, ξ), g(φE, ϕF ) = g(E,F )− εη(E)η(F )

for all vector fields E, F on χ(M), where ε is 1 or -1 according as ξ is a spacelike
or timelike vector field and rank φ = (n − 1). Here χ(M) denotes the a set of all
smooth vector fields of M. If

(2.3) dη(E,F ) = g(E,φF )

for every E,F ∈ χ(M), then we say that M(φ, ξ, η, g, ε) is an (ε)-contact metric
manifold, where d is an exterior derivative. We also have

(2.4) φξ = 0, η(φE) = 0.

If an (ε)-contact metric manifold satisfies

(2.5) (∇Eφ)(Y ) = −g(E,φF )− εη(F )φE,

where ∇ denotes the Levi-Civita connection with respect to g, then M is called
an (ε)-Kenmotsu manifold [10]. An (ε)-almost contact metric manifold is an (ε)-
Kenmotsu manifold if and only if

(2.6) ∇Eξ = ε[E − η(E)ξ], ∀ ∈ χ(M).

Moreover, the curvature tensor R, the Ricci tensor Ric and the Ricci operator Q
on an (ε)-Kenmotsu manifold M with respect to the Levi-Civita connection satisfy
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the following relations:

(∇Xη)(F ) = g(E,F )− εη(E)η(F ), (∇ξη)(F ) = 0,(2.7)

R(E,F )ξ = η(E)F − η(F )E,(2.8)

R(ξ, E)F = η(F )E − εg(E,F )ξ,(2.9)

R(ξ, E)ξ = −R(E, ξ)ξ = E − η(E)ξ,(2.10)

η(R(E,F )G) = ε[g(E,G)η(F )− g(F,G)η(E)],(2.11)

Ric(E, ξ) = −(n− 1)η(E),(2.12)

Qξ = −ε(n− 1)ξ,(2.13)

Ric(φE,φF ) = Ric(E,F ) + ε(n− 1)η(E)η(F ),(2.14)

where g(QE,F ) = Ric(E,F ) [10]. We note that if ε = 1 then an (ε)-Kenmotsu
manifold becomes the well-known Kenmotsu manifold [13].

An (ε)-Kenmotsu manifold M is said to be an η-Einstein manifold if its Ricci
tensor Ric is of the form

(2.15) Ric(E,F ) = Ag(E,F ) +Bη(E)η(F ),

where A and B are scalar functions.

Example 2.1. We consider a three dimensional manifold M = {(x, y, z) ∈ R3, z ̸=
0}, where (x, y, z) are the Cartesian coordinates in R3. We choose the vector fields

v1 = z
∂

∂x
, v2 = z

∂

∂y
, v3 = −z ∂

∂z
,

which are linearly independent at each point of M. Let g be the Riemannian metric
defined by

g(v1, v2) = g(v2, v3) = g(v3, v1) = 0, g(v1, v1) = g(v2, v2) = g(v3, v3) = ε,

where ε = ±1. Let η be a 1-form defined by η(G) = εg(G, v3) for any vector field G
onM. Let ϕ be a (1, 1)-tensor field defined by ϕ(v1) = −v2, ϕ(v2) = v1, ϕ(v3) = 0.
Then by the linearity property of ϕ and g, we have

ϕ2G = −G+ η(G)v3, η(v3) = 1 and g(ϕG, ϕH) = g(G,H)− εη(G)η(H)

for any vector fields G,H on M. Let ∇ be the Levi-Civita connection with respect
to the metric g. Then we have

[v1, v2] = 0, [v1, v3] = v1, [v2, v3] = v2.

The use of Koszul’s formula

2g(∇EF,G) = Eg(F,G) + Fg(G,E)−Gg(E,F )

+g([E,F ], G)− g([F,G], E) + g([G,E], F )
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gives

∇v1v3 = εv1, ∇v2v3 = εv2, ∇v3v3 = 0,

∇v1v2 = 0, ∇v2v2 = −εv3, ∇v3v2 = 0,

∇v1v1 = −εv3, ∇v2v1 = 0, ∇v3v1 = 0.

Using the above relations, for any vector field E on M, we have

∇Eξ = ε[E − η(E)ξ]

for ξ = v3. Hence the manifold M under consideration is an (ε)-Kenmotsu manifold
of dimension three.

3. η-Einstein Solitons on (M, ϕ, ξ, η, g, ε)

Let (M, ϕ, ξ, η, g, ε) be an n-dimensional (ε)-almost contact metric manifold.
Consider the equation

(3.1) Lξg + 2Ric+ (2λ− σ)g + 2µη ⊗ η = 0,

where Lξ is the Lie derivative operator along the vector field ξ, and λ, and µ are
real constants. For µ ̸= 0, the data (g, ξ, λ− σ

2 , µ) will be called η-Einstein soliton
on M if it satisfies equation (3.1). We remark that if the scalar curvature σ of the
manifold M is constant, then the η-Einstein soliton (g, ξ, λ− σ

2 , µ) reduces to an η-
Ricci soliton. Moreover, if µ = 0, then the η-Einstein soliton (g, ξ, λ− σ

2 , µ) becomes
a Ricci soliton (g, ξ, λ − σ

2 ). Therefore, the central idea of η-Einstein soliton [11]
and η-Ricci soliton are different on manifolds of non constant scalar curvature.

Replacing the value of Lξg in (3.1), we obtain

(3.2) 2Ric(E,F ) = −g(∇Eξ, F )− g(E,∇F ξ)− (2λ− σ)g(E,F )− 2µη(E)η(F )

for any X,Y ∈ χ(M). To prove the existence of η-Einstein soliton on an (ε)-
Kenmotsu manifold, we provide the following non-trivial example:

Example 3.1. We consider a three dimensional manifold M = {(x, y, z) ∈ R3, z ̸=
0}, where (x, y, z) are the Cartesian coordinates in R3. We choosing the vector fields

v1 = e−z
(
∂

∂x
+

∂

∂y

)
, v2 = e−z

(
∂

∂y
− ∂

∂x

)
, v3 =

∂

∂z
,

which are linearly independent at each point of M Let g be the Riemannian metric
define by

g(v1, v3) = g(v2, v3) = g(v2, v2) = 0, g(v1, v1) = g(v2, v2) = g(v3, v3) = ε,

where ε = ±1. The metric can be expressed un the following form

g = ε

{
1

2e−z
(dx⊗ dx+ dy ⊗ dy) + dz ⊗ dz

}
.
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Let η be the 1-form defined by η(G) = εg(G, v3) for any vector field G on M. Let
ϕ be the (1, 1) tensor field defined by ϕ(v1) = v2, ϕ(v2) = −v1, and ϕ(v3) = 0.
Then, by the linearity property of ϕ and g, we have

ϕ2G = −G+ η(G)v3, η(v3) = ε and g(ϕG, ϕH) = g(G,H)− εη(G)η(H)

for any vector fields G, H on M. Let ∇ be the Levi-Civita connection with respect
to the metric g. Then we have

[v1, v2] = 0, [v1, v3] = v1, [v2, v3] = v2.

Using of Koszul’s formula, we have

∇v1v3 = εv1, ∇v2v3 = εv2, ∇e3e3 = 0,

∇v1v2 = 0, ∇v2v2 = −εv3, ∇v3v2 = 0,

∇v1v1 = −εv3, ∇v2v1 = 0, ∇v3v1 = 0.

Using the above relations, for any vector field E on M, we have

∇Eξ = ε(E − η(E)ξ)

for ξ = v3. Hence the manifold M under consideration is an ε-Kenmotsu manifold
of dimension three. The non-vanishing components of the curvature tensor and the
Ricci tensor can be computed as:

R(v1, v2)v2 = −v1, R(v1, v3)v3 = −v1, R(v2, v1)v1 = −v2,

R(v2, v3)v3 = −v2, R(v3, v1)v1 = −v3, R(v3, v2)v2 = −v3,

and

Ric(v1, v1) = Ric(v2, v2) = Ric(v3, v3,) = −2ε.

Thus the scalar curvature scal is given by

σ = S(e1, e1) + S(e2, e2) + S(e3, e3,) = −6ε,

which is constant. From the above discussions, it is apparent that equation (3.1)
is satisfied for λ = 2 − 4ε and µ = 1. Thus the data (g, ξ, λ − σ

2 , µ) admits an
η-Einstein soliton on (M3, ϕ, ξ, η, g, ε), which is shrink and expand, according as
ε = 1 or ε = −1, respectively.

4. Second Order Parallel Symmetric Tensor and η-Einstein Solitons on
(ε)-Kenmotsu Manifold

A well known geometrical tool used for studying Einstein solitons is a symmetric
(0, 2)-tensor field, which is parallel with respect to the Levi-Civita connection. Now,
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let us fix h as a symmetric parallel tensor field of (0, 2)-type, that is, ∇h = 0.
Applying the well known Ricci identity [14]

∇2h(E,F ;G,H)−∇2h(E,F ;G,W ) = 0,

we obtain the relation

(4.1) h(R(E,F )G,H) + h(G,R(E,F )H) = 0.

Replacing G = H = ξ in equation (4.1) and by using equation (??) and symmetry
properties of h, we obtain h(R(E,F )ξ, ξ) = 0 for any E,F ∈ χ(M). Thus we have

(4.2) η(E)h(ξ, F )− η(F )h(ξ, E) = 0.

Substituting E = ξ in (4.2) and by the virtue of (2.1), we obtain

h(F, ξ)− η(F )h(ξ, ξ) = 0,

which is equivalent to

(4.3) h(F, ξ)− εg(F, ξ)h(ξ, ξ) = 0.

Differentiating this equation covariantly with respect to the Levi-Civita connection
∇ along the vector field X ∈ χ(M), we obtain
(4.4)
h(∇EF, ξ) + h(F,∇Eξ) = εh(ξ, ξ)[g(∇EF, ξ) + g(F,∇Eξ)] + 2εg(F, ξ)h(∇Eξ, ξ).

Using equations (2.1), (2.2), (2.6), (2.7) and (4.3) in this equation, we find that

(4.5) h(E,F ) = εh(ξ, ξ)g(E,F )

for any E,F ∈ χ(M). The covariant derivative of equation (4.5) with respect to the
Levi-Civita connection ∇ along any arbitrary vector field G ∈ χ(M) indicates, with
the help of the equations (2.1), (2.2) and (2.6), that h(ξ, ξ) is constant. Equation
(4.5) reveals that h is a constant multiple of the metric g. Thus we arrive at the
following conclusion.

Theorem 4.1. If an n-dimensional (ε)-Kenmotsu manifold (M, ϕ, ξ, η, g, ε) admits
a second order parallel symmetric tensor h, then it is a constant multiple of the
metric g.

Using equation (2.6) and Lξg = 2ε(g − εη ⊗ η) in equation (3.2), we obtain

(4.6) Ric(E,F ) = −(λ+ ε− σ

2
)g(E,F )− (µ− 1)η(E)η(F ).

In particular, for E = ξ we obtain

(4.7) Ric(E, ξ) = −(λε+ µ− ε
σ

2
)η(E).
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In this case, the Ricci operator Q defined by g(QE,F ) = S(E,F ) given by

(4.8) QE = −(λ+ ε− σ

2
)E − ε(µ− 1)η(E)ξ.

We remark that on an (ε)-Kenmotsu manifold, the existence of an η-Einstein soliton
implies that the characteristic vector field ξ is an eigen vector of Ricci operator
corresponding to the eigenvalue −(λ+µε− σ

2 ). Now, we apply the previous results
on η-Einstein soliton.

Theorem 4.2. Let (M, ϕ, ξ, η, g) be an (ε)-Kenmotsu manifold and let us assume
that the symmetric (0, 2)-tensor field h = Lξg+2Ric+2µη⊗η is parallel associated
to g. Then (g, ξ,−1

2 [ε h(ξ, ξ)− σ], µ) yields an η-Einstein soliton.

Proof. Now, we can calculate

(4.9) h(ξ, ξ) = Lξg(ξ, ξ) + 2Ric(ξ, ξ) + 2µη(ξ)η(ξ) = −ε(2λ− σ),

From this equation, we have λ = − 1
2 [ε h(ξ, ξ)− σ]. Equations (2.1), (2.1) and (4.7)

have been used for obtaining equation (4.9). From equation (4.5) we can conclude
that

h(E,F ) = −(2λ− σ)g(E,F )

for any E,F ∈ χ(M). Therefore

(4.10) Lξg + 2Ric+ 2µη ⊗ η = −(2λ− σ)g.

This gives the statement of Theorem 4.2. 2

For µ = 0, from equations (4.9) and (4.10), we can obtain

(4.11) Lξg + 2Ric− ε h(ξ, ξ)g = 0.

Hence we can state the following corollary.

Corollary 4.3. On an (ε)-Kenmotsu manifold (M, ϕ, ξ, η, g, ε) with the property
that the symmetric (0, 2)-tensor field h = Lξg + 2Ric is parallel to the connection
∇ associated with g, the relation (4.9), defines a Ricci soliton for µ = 0.

Conversely, we shall discuss the consequences of the existence of η-Einstein soli-
tons on an (ε)-Kenmotsu manifold. From (4.10) we obtain the following conclusion:

Theorem 4.4. If equation (4.10) define an η-Einstein soliton on an (ε)-Kenmotsu
manifold (M, ϕ, ξ, η, g, ε), then (M, g) is quasi-Einstein.

As mentioned, a manifold is called quasi-Einstein if the Ricci tensor S is a linear
combination (with real scalars λ and µ respectively, with µ ̸= 0) of g and the tensor
product of a non-zero 1-from η satisfying η(E) = εg(E, ξ), where ξ is a unit vector
field. The manifold is called Einstein if Ric is collinear with g.
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5. Weyl Semi-symmetric (ε)-Kenmotsu Manifold

This section describes a study of Weyl semi-symmetric (ε)-Kenmotsu mani-
folds admitting η-Einstein solitons. For an n-dimensional (ε)-almost contact metric
manifold, the Weyl conformal curvature tensor C is given by:

C(E,F )G = R(E,F )G− 1

(n− 2)
[Ric(F,G)E −Ric(E,G)F + g(F,G)QE

−g(F,G)QF ] + σ

(n− 1)(n− 2)
[g(F,G)E − g(E,G)F ].(5.1)

From this equation (5.1), we can easily find that

C(ξ, E)F = − 1

(n− 1)(n− 2)
[σ ε+ (n− 1)][η(F )E − g(E,F )ξ]

− 1

n− 2
{Ric(E,F )ξ − εη(F )QE},(5.2)

and

C(ξ, E)ξ = − 1

(n− 1)(n− 2)
[σ ε+ (n− 1)][E − εη(E)ξ]

+
1

n− 2
{QE + ε(n− 1)η(F )ξ},(5.3)

where equations (2.1), (2.2), (2.9) and (2.12) have been used. Before proceeding to
prove our results, we provide the following definition.

Definition 5.1. An n-dimensional (ε)-Kenmotsu manifold M is said to be a Weyl
semi-symmetric if R(E,F ) · C = 0, ∀ E,F ∈ χ(M).

Let us assume that the manifold M is Weyl semi-symmetric (ε)-Kenmotsu man-
ifold. Then from Definition (5.1), we have

R(E,F )C(U, V )W − C(R(E,F )U, V )W(5.4)

− C(U,R(E,F )V )W − C(U, V )R(E,F )W = 0.

Substituting E = U = ξ in this equation and using (2.9), we obtain

η(C(ξ, V )W )F − εg(F,C(ξ, V )W )ξ − C(F, V )W

+η(F )C(ξ, V )W − η(V )C(ξ, F )W + εg(F, V )C(ξ, ξ)W

−η(W )C(ξ, V )F + εg(F,W )C(ξ, V )ξ = 0.(5.5)

Using equations (5.1), (5.2) and equation (5.3) in (5.5), we have

(5.6) R(F, V )W = ε[g(F,W )V − g(V,W )F ].
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Taking the inner product of (5.6) with Z, we have

g(R(F, V )W,G) = ε[g(F,W )g(V,G)− g(V,W )g(F,G)].(5.7)

Taking V =W = ei, where {ei, i = 1, 2, ..., n} be a set of orthonormal vector fields
of the tangent space of M, and summing over i, i = 1, 2, ..., n, in equation (5.7), we
obtain

Ric(F,G) = −ε(n− 1)g(F,G) =⇒ σ = −εn(n− 1).(5.8)

This shows that the manifold under consideration has a space of constant curvature
and that it is therefore an Einstein manifold. Conversely we suppose that the (ε)-
Kenmotsu manifold of dimension n satisfies equations (5.7) and (5.8). It is well
known that

(R(E,F ) · C)(U, V )W = R(E,F )C(U, V )W − C(R(E,F )U, V )W

− C(U,R(E,F )V )W − C(U, V )R(E,F )W.(5.9)

From equations (5.7)-(5.9), we obtain

R · C = 0.(5.10)

This shows that an n-dimensional (ε)-Kenmotsu manifold M is Weyl semi-
symmetric. Hence we can state the following:

Theorem 5.2. An n-dimensional (ε)-Kenmotsu manifold is Weyl semi-symmetric
if and only if it is a space of constant curvature.

Suppose that the Weyl semi-symmetric (ε)-Kenmotsu manifold M admits an
η-Einstein soliton (g, ξ, λ− σ

2 , µ). Then from equations (3.2) and (5.8), we have

−2ε(n− 1)g(E,F ) = −g(∇Eξ, F )− g(E,∇F ξ)− (2λ− σ)g(E,F )− 2µη(E)η(F ).

Replacing E with ξ in the above equation and using equations (2.1), (2.2), (2.6)
and (2.7), we obtain

{ε(n− 1)− λ+
σ

2
− µε}η(F ) = 0.

Since η(F ) ̸= 0 (in general) on an ε-contact metric manifold, the above equation
gives

λ = −ε
2
[2µ+ (n− 1)(n− 2)].

On the basis of these facts, we can state the following theorem.

Theorem 5.3. Let M be an n-dimensional Weyl semi-symmetric (ε)-Kenmotsu
manifold with n ≥ 3. Then the η-Einstein soliton (g, ξ, λ − σ

2 , µ) on M is said to
be shrink, expand, and remain steady if 2µε + ε(n − 1)(n − 2) is >, <, and = 0,
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respectively.

6. Einstein Semi-symmetric (ε)-Kenmotsu Manifold

This section concerns with the study of η-Einstein soliton on Einstein semi-
symmetric (ε)-Kenmotsu manifold. To prove our results, we recall the following
definition.

Definition 6.1. An n-dimensional (ε)-Kenmotsu manifold M is called Einstein
semi-symmetric if R · Ein = 0, where Ein is the Einstein tensor defined by

Ein(E,F ) = Ric(X,Y )− σ

n
g(E,F ),(6.1)

where Ric is the Ricci tensor and σ is the scalar curvature.

Let M be an n-dimensional Einstein semi-symmetric (ε)-Kenmotsu manifold.
Then from the Definition (6.1), we have

(R(E,F ) · Ein)(G,H) = 0.(6.2)

This equation can be written as

Ein(R(E,F )G,H) + Ein(G,R(E,F )H) = 0.(6.3)

Now, using equation (6.1) in equation (6.3), we obatin

Ric(R(E,F )G,H) +Ric(G,R(E,F )H)

−σ
n
[g(R(E,F )G,H) + g(G,R(E,F )H)] = 0,(6.4)

which is equivalent to the Ricci semi-symmetric (ε)-Kenmotsu manifold. Replacing
E and H with ξ in equation (6.4) and then using equations (2.1)-(2.10) and (2.12),
we obtain

Ric(E,G) = (n− 1)εg(E,G).(6.5)

This equation shows that the manifold under consideration is an Einstein manifold.
The converse is obvious. Hence we state the following.

Theorem 6.2. An n-dimensional (ε)-Kenmotsu manifold M is Einstein semi-
symmetric if and only if it is an Einstein manifold.

Now, let us consider an n-dimensional (ε)-Kenmotsu manifold M admits an
η-Einstein soliton (g, V, λ− σ

2 , µ) on M. If V is a conformal Killing vector field on
M , then by definition we have

(LV g)(E,F ) = ρg(E,F )(6.6)
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for some scalar function ρ. From equation (3.1), we have

Ric = −
(
λ− σ

2

)
g − 1

2
LV g − µη ⊗ η.

From equation (6.6) and the above equation, we have

Ric(E,F ) = −
[(
λ− σ

2

)
+
ρ

2

]
g(E,F )− µη(E)η(F ).(6.7)

From equations (6.1) and (6.4), we can obtain

(R(E,F ) · Ein)(G,H) =−Ric(R(E,F )G,H)−Ric(G, (R(E,F )H)(6.8)

+
r

n
[g(R(E,F )G,H) + g(G,R(E,F )H)].

Using equations (2.11), and (6.7) and the curvature identity in equation (6.8), we
obatin

(R(E,F ) · Ein)(G,H) = εµ{η(H)η(F )g(E,G)− η(E)η(H)g(F,G)

+ η(G)η(H)g(E,F )− η(G)η(E)g(F,H)}.(6.9)

On an ε-contact metric manifold, in general, η(H)η(F )g(E,G)−η(E)η(H)g(F,G)+
η(G)η(H)g(E,F ) − η(G)η(E)g(F,H) ̸= 0. Therefore from equation (6.9) we have
µ = 0. This shows that an n-dimensional (ε)-Kenmotsu manifold M with the
conformal Killing vector field is Einstein semi-symmetric if and only if µ = 0. Thus
we can state the following theorem.

Theorem 6.3. Suppose M is an n-dimensional, n ≥ 3, (ε)-Kenmotsu manifold
admitting a conformal Killing vector field V , then the η-Einstein soliton (g, V, λ −
σ
2 , µ) on M is an Einstein soliton if and only if M is Einstein semi-symmetric.
Moreover, the Einstein soliton (g, V, λ − σ

2 ) is shrink, expand, or steady according
as ρ > (n− 1)(n− 2)ε, ρ < (n− 1)(n− 2)ε, or ρ = (n− 1)(n− 2)ε, respectively.

7. η-Einstein Solitons on φ-Ricci Symmetric (ε)-Kenmotsu Manifold

Definition 7.1. An (ε)-Kenmotsu manifold is said to be ϕ-Ricci symmetric if the
Ricci operator Q satisfies

φ2(∇EQ)F = 0

for all vector fields E, F on M.

Let us assume that M is an n-dimensional φ-Ricci symmetric (ε)-Kenmotsu
manifold. Then from Definition (7.1) and equation (2.1) we have

−(∇EQ)F + η((∇EQ)F )ξ = 0.(7.1)
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Taking the inner product of (7.1) with G and using equation (2.2), we have

−g((∇XQ)(F ), G) + εη((∇EQ)(F ))η(G) = 0,

from which we can obtain

−g(∇EQF,G) +Ric(∇EF,G) + εη((∇EQ)(F ))η(G) = 0.(7.2)

Substituting F = ξ in equation (7.2) and using equations (2.2), (2.6) and (2.13), we
obtain

(n− 1)[g(E,G)− η(E)η(G)] + ε[Ric(E,G) + (n− 1)η(E)η(G)] = 0,

which gives

Ric(E,G) = −ε(n− 1)g(E,G) + (ε− 1)(n− 1)η(E)η(G).(7.3)

This shows that the manifold under consideration is an η-Einstein manifold for
ε ̸= 1. Hence we can state the following theorem.

Theorem 7.2. An n-dimensional φ-Ricci symmetric (ε)-Kenmotsu manifold is an
η-Einstein manifold.

From equations (3.2) and (7.3), we have

g(∇Eξ,G) + g(E,∇Gξ) + (2λ− σ)g(E,G) + 2µη(E)η(G)

= 2(n− 1){εg(E,F )− (ε− 1)η(E)η(G)}.(7.4)

Substituting E = ξ in equation (7.4), we obtain

g(∇Eξ, ξ) + g(E,∇ξξ) + (2λ− σ)g(E, ξ) + 2µη(E)η(ξ)

= 2(n− 1){εg(E, ξ)− (ε− 1)η(E)η(ξ)},

which gives

[2(ε− 2)(n− 1) + (2λ− σ)ε+ 2µ] η(E) = 0.(7.5)

Since η(E) ̸= 0 on an almost contact metric manifold, therefore equation (7.5) takes
the form

λ =
σ

2
− (ε− 2)(n− 1)− µ.

From equation (7.3), we have

σ = −(n− 1)[(n− 1)ε+ 1].

From the last two equations, we have

λ = −1

2
[(n− 1)(nε+ ε− 3) + 2µ].
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This shows that the η-Einstein soliton on M under consideration shrink, expand,
or remain steady if (n− 1)(nε+ ε− 3)+ 2µ is >, <, = 0, respectively. Thus we can
state the following theorem.

Theorem 7.3. Let (g, ξ, λ − σ
2 , µ) be an η-Einstein soliton on an n-dimensional

φ-symmetric (ε)-Kenmotsu manifold M. Then (g, ξ, λ − σ
2 , µ) expand, shrink, or

remains steady if (n− 1)(nε+ ε− 3) + 2µ is <, >, = 0, respectively.
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