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Abstract. The object of the present paper is to classify a special type of spacetime, called

Lorentzian para-Sasakian type spacetime (4-dimensional LP -Sasakian manifold with a co-

efficient α) satisfying certain curvature conditions.

1. Introduction

In 2002, De et.al [5] introduced the notion of Lorentzian Para-Sasakian mani-
folds with a coefficient α which generalizes the idea of LP -Sasakian manifolds intro-
duced by Matsumoto [9]. Hereafter, we refer to Lorentzian Para-Sasakian manifolds
with a coefficient α as LP -Sasakian manifolds with a coefficient α. Mihai and Rosca
[11] also introduced the same notion of LP -Sasakian manifolds independently and
obtained several results in this manifold. LP -Sasakian manifolds with a coefficient
α have been studied in [3, 4]. Ikawa and his co-authors [6, 7]) investigated Sasakian
manifolds with a Lorentzian metric and obtained several interesting results. Mo-
tivated by the above works, we study some relativistic properties of LP -Sasakian
manifolds with a coefficient α.

The basic difference between the Riemannian and the semi-Riemannian (sig-
nature of the metric tensor g is (+,+,+, ...+,+,+) and (−,−,−, ...+,+,+) re-
spectively) geometry is the existence of a null vector, that is, a vector v satisfying
g(v, v) = 0. A non-zero vector v ∈ TpM is said to be timelike (resp; non-spacelike,
null, spacelike) if it satisfies g(v, v) < 0 (resp; ≤ 0. = 0, > 0) [13]. A Lorentzian
manifold is a special case of a semi-Riemannian manifold. Spacetime means a four
dimensional connected semi-Riemannian manifold (M4, g) with Lorentz metric g of
signature (−,+,+,+). Here we consider a special type of spacetime which is called
Lorentzian para-Sasakian type spacetime(4-dimensional LP -Sasakian manifold with
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a coefficient α).
A tensor C of type (1, 3) that remains invariant under conformal transformation

for an n-dimensional Riemannian manifold Mn, is defined by [16]

C(X,Y )U = R(X,Y )U − 1

n− 2
{S(Y, U)X − S(X,U)Y + g(Y,U)QX

− g(X,U)QY }+ r

(n− 1)(n− 2)
{g(Y, U)X − g(X,U)Y }(1.1)

for all X, Y, U ∈ TM , where r is the scalar curvature of M and Q is the symmet-
ric endomorphism of the tangent space at each point corresponding to the Ricci
tensor S. The equation (1.1) is known as Weyl conformal curvature tensor. The
same defination is valid in a Lorentzian manifold. Identically, if the conformal cur-
vature tensor of a manifold of dimension > 3 vanishes then the manifold is called
conformally flat. However for a 3-dimensional Riemannian manifold C = 0.

A Riemannian or a semi-Riemannian manifold is said to be semisymmetric [15]
if its curvature tensor R satisfies the condition

R(X,Y ) ·R = 0,

for all X, Y ∈ χ(M), where R(X,Y ) acts as a derivation on the curvature tensor
R. Locally symmetric spaces and all two-dimensional Riemannian spaces are trivial
examples of semisymmetric spaces. But a semisymmetric space is not necessarily
locally symmetric. A fundamental study on such manifolds was made by Szabó
[14, 15] and Kowalski [8]. In this connection we can mention the book of Boeckx,
Kowalski and Vanhecke [2] and the references therein.

Also, a Riemannian or a semi-Riemannian manifold is said to be Ricci semisym-
metric [12] if the Ricci tensor S of type (0,2) satisfies the condition

R(X,Y ) · S = 0,

for all X, Y ∈ χ(M).
In 1995, Alias, Romero and Sánchez [1] introduced the notion of generalized

Robertson-Walker (GRW) spacetimes. A Lorentzian manifold M of dimension n ≥
3 is named generalized Robertson-Walker (GRW) spacetime if it is the warped
product M = I ×q2 M

∗ with base (I,−dt2), warping function q and the fibre
(M∗, g∗) is an (n-1)-dimensional Riemannian manifold. If M∗ is a 3-dimensional
Riemannian manifold of constant curvature, the spacetime is called a Robertson-
Walker (RW ) spacetime. Therefore, GRW spacetimes are a wide generalization of
RW spacetimes.

In general relativity, the perfect fluid spacetime is of special interest. Lorentzian
manifolds with Ricci tensor of the form

(1.2) S(X,Y ) = αg(X,Y ) + βA(X)A(Y ),

where α, β are scalar fields and U is a unit timelike vector field corresponding to
the 1-form A (that is, g(U,U) = −1), are called perfect fluid spacetimes.
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Einstein’s Field equations without cosmological constant are given by

(1.3) S(X,Y )− r

2
g(X,Y ) = kT (X,Y ),

for all vector fields X,Y where k is the gravitational constant and T is the energy
momentum tensor of type (0, 2).

The energy momentum tensor T is said to describe a perfect fluid [13] if

(1.4) T (X,Y ) = (µ+ p)A(X)A(Y ) + pg(X,Y ),

where µ is the energy density function, p is the isotropic pressure function of the
fluid.

The paper is organized as follows. In Section 2, some preliminary results
are recalled. After preliminaries in Section 3, we prove that a ξ-conformally flat
Lorentzian para-Sasakian type spacetime is a Robertson-Walker spacetime. Then
we study ϕ-Weyl semisymmetric Lorentzian para-Sasakian type spacetime and prove
that a ϕ-Weyl semisymmetric Lorentzian para-Sasakian type spacetime is a perfect
fluid spacetime, provided α2 = σ and a state equation is derived. In the next section,
we shown that a Ricci-semisymmetric Lorentzian para-Sasakian type spacetime is
an Einstein spacetime and the state equation is given by p+ µ= scalar.

2. Preliminaries

A differentiable manifold Mn of dimension n is called Lorentzian almost para-
contact manifold [9] if it admits a (1, 1) tensor field ϕ, a contravariant vector field ξ,
a covariant vector field η and a Lorentzian metric g of type (0, 2) (for each point p
∈M , the tensor gp: TpM × TpM → R inner product of signature (−,+,+, .....,+),
where TpM denotes the tangent vector space of M at p and R is the real number
space) satisfy the following

(2.1) ϕ2(X) = X + η(X)ξ, η(ξ) = −1,

(2.2) g(X, ξ) = η(X), g(ϕX, ϕY ) = g(X,Y ) + η(X)η(Y )

for all vector fields X,Y . Also in the Lorentzian almost paracontact manifold
Mn, the following relations hold [9] :

(2.3) ϕξ = 0, η(ϕX) = 0,

(2.4) Ω(X,Y ) = Ω(Y,X),

where Ω(X,Y ) = g(X,ϕY ).
If the relations

(∇ZΩ)(X,Y ) = α[(g(X,Z) + η(X)η(Z)) η(Y )

+ (g(Y, Z) + η(Y )η(Z))η(X)],(2.5)
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(2.6) Ω(X,Y ) =
1

α
(∇Xη)(Y ),

hold for a Lorentzian almost paracontact manifold Mn where ∇ denotes the op-
erator of covariant differentiation with respect to the Lorentzian metric g, and α
is a non-zero scalar function then Mn is called an LP -Sasakian manifold with a
coefficient α [5]. If we take α = 1, then it reduces to an LP -Sasakian manifold [9].

If a vector field V satisfies the equation of the following form:

∇XV = βX + T (X)V,

where β is a non-zero scalar function and T is a covariant vector field, then V is
called a torse-forming vector field [16].

In the Lorentzian manifold Mn, if we assume that ξ is a unit torse-forming
vector field, then we have the equation:

(2.7) (∇Xη)(Y ) = α[g(X,Y ) + η(X)η(Y )],

where α is a non-zero scalar function. It is to be noted that in Lorentzian para-
Sasakian type spacetime ξ is a unit timelike vector.

Let us consider an LP -Sasakian manifold M4 (ϕ, ξ, η, g) with a coefficient α.
Then we have the following relations [5]:

η(R(X,Y )Z) = (α2 − σ)[g(Y, Z)η(X)− g(X,Z)η(Y )],(2.8)

S(X, ξ) = 3(α2 − σ)η(X),(2.9)

R(X,Y )ξ = (α2 − σ)[η(Y )X − η(X)Y ],(2.10)

(∇Xϕ)(Y ) = α[g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X],(2.11)

S(ϕX, ϕY ) = S(X,Y ) + 3(α2 − σ)η(X)η(Y ),(2.12)

for all vector fields X,Y, Z, where R,S denote respectively the curvature tensor and
the Ricci tensor of the manifold.

Now we state the following results which will be needed in the later section.

Lemma 2.1.([5]) In a Lorentzian almost paracontact manifold Mn(ϕ, ξ, η, g) with
its structure (ϕ, ξ, η, g) satisfying Ω(X,Y ) = 1

α (∇Xη)(Y ), where α is a non-zero
scalar, the vector field ξ is torse-forming if and only if ψ2 = (n− 1)2 holds good.

Lemma 2.2. In an LP -Sasakian manifold with a coefficient α the curvature tensor
R satisfies the relation

R(X,Y )ϕZ − ϕR(X,Y )Z = (α2 − σ)[g(X,Z)η(Y )− g(Y, Z)η(X)]ξ

+ (α2 − σ)η(Z)[Xη(Y )− Y η(X)].(2.13)
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3. ξ-conformally Flat Lorentzian Para-Sasakian Type Spacetime

Definition 3.1. A 4-dimensional Lorentzian para-Sasakian type spacetime is said
to be ξ-conformally flat [18] if

C(X,Y )ξ = 0, for any X,Y ∈ TM.

In this section we characterize ξ-conformally flat Lorentzian para-Sasakian type
spacetime. LetM be a ξ-conformally flat Lorentzian para-Sasakian type spacetime.
Putting U = ξ in (1.1) and using C(X,Y )ξ = 0, we have

R(X,Y )ξ =
1

2
{S(Y, ξ)X − S(X, ξ)Y + η(Y )QX − η(X)QY }

− r

6
[η(Y )X − η(X)Y ].(3.1)

Using (2.9) and (2.10) in the above equation, we obtain

(3.2) η(Y )QX − η(X)QY =
(r
3
− (α2 − σ)

)
[η(Y )X − η(X)Y ].

Replacing Y by ξ in the foregoing equation yields

(3.3) QX =
(r
3
− (α2 − σ)

)
X −

(r
3
− 4(α2 − σ)

)
η(X)ξ.

From (3.3), we get

(3.4) S(X,Y ) =
(r
3
− (α2 − σ)

)
g(X,Y )−

(r
3
− 4(α2 − σ)

)
η(X)η(Y ).

That is, the spacetime is a perfect fluid spacetime. In view of the above discussions
we state the following:

Theorem 3.1. A ξ-conformally flat Lorentzian para-Sasakian type spacetime is a
perfect fluid spacetime.

Since conformally flat implies ξ-conformally flat, therefore we can state:

Corollary 3.1. A conformally flat Lorentzian para-Sasakian type spacetime is a
perfect fluid spacetime.

Replacing Y by ξ in the equation (3.4) yields

S(X, ξ) =

[
2r

3
− 5(α2 − σ)

]
η(X),

which implies ξ is an eigenvector of the Ricci tensor.

Corollary 3.2. In a ξ-conformally flat Lorentzian para-Sasakian type spacetime,
the characteristic vector field ξ is an eigenvector of the Ricci tensor.



826 Krishnendu De

It is known [5] that if an LP -Sasakian manifold with a coefficient α is η- Einstein,
then the Ricci tensor S is of the form

S(Y, Z) =

[
r

3
− α2 − ψσ

3

]
g(Y, Z) +

[
r

3
− 4α2 − 4ψσ

3

]
η(Y )η(Z).(3.5)

By virtue of (3.4) and (3.5), we get[
σ +

ψσ

3

]
g(X,Z) +

[
4σ +

4ψσ

3

]
η(X)η(Z) = 0.(3.6)

Putting Z = ξ in (3.6), we obtain

(3.7) η(X)σ(ψ + 3) = 0,

which gives

(3.8) ψ2 = 32.

Hence by Lemma 2.1 we conclude that ξ is torse-forming. Thus we can state
the following:

Theorem 3.2. In a ξ-conformally flat Lorentzian para-Sasakian type spacetime,
the characteristic vector field ξ is a torse-forming vector field.

In [10], the authors proved the following:

Theorem 3.3.([10, Proposition 3.7]) A Lorentzian manifold of dimension n ≥ 3
is a GRW spacetime if and only if it admits a unit timelike torse-forming vector,
∇XV = ϕ(X + ω(X)V ), where ω(X) = g(X,V ) for every vector field X, that is
also an eigenvector of the Ricci tensor.

In view of the above Theorem we conclude the following:

Theorem 3.4. A ξ-conformally flat Lorentzian para-Sasakian type spacetime is a
GRW spacetime.

Also in [10] the following result was stated “ A 4-dimensional GRW spacetime
is perfect fluid if and only if it is a RW spacetime.” Therefore we can state the
following:

Theorem 3.5. A ξ-conformally flat Lorentzian para-Sasakian type spacetime is a
RW spacetime.

4. ϕ-Weyl Semisymmetric Lorentzian Para-Sasakian Type Spacetime

In 2012, Yildiz and De [17] introduced the notion of ϕ-Weyl semisymmetric
(k, µ)-contact metric manifold.
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Definition 4.1. A (k, µ)-contact metric manifold is said to be ϕ-Weyl semisym-
metric if

C(X,Y ).ϕ = 0

for arbitrary vector fields X,Y .

We adopt the same definition in an LP -Sasakian manifolds with a coefficient α.
Let M be a ϕ-Weyl semisymmetric Lorentzian para-Sasakian type spacetime. The
condition C(X,Y ).ϕ = 0 turns into

(4.1) (C(X,Y ).ϕ)Z = C(X,Y ).ϕZ − ϕC(X,Y )Z = 0,

for any vector field X,Y, Z.
Using (1.1) in (4.1), we have

R(X,Y )ϕZ − 1

2
{S(Y, ϕZ)X − S(X,ϕZ)Y + g(Y, ϕZ)QX

− g(X,ϕZ)QY }+ r

6
{g(Y, ϕZ)X − g(X,ϕZ)Y }

− ϕ(R(X,Y )Z) +
1

2
{S(Y, Z)ϕX − S(X,Z)ϕY + g(Y, Z)ϕ(QX)

− g(X,Z)ϕ(QY )} − r

6
{g(Y, Z)ϕX − g(X,Z)ϕY } = 0.(4.2)

Putting Z = ξ and using (2.13), we have

− (α2 − σ)[Xη(Y )− Y η(X)]

+
1

2
{η(Y )ϕ(QX)− η(X)ϕ(QY ) + S(Y, ξ)ϕX

− S(X, ξ)ϕY } − r

6
{η(Y )ϕX − η(X)ϕY } = 0.(4.3)

Taking the inner product on both sides by W and symmetry property of ϕ, we
obtain

− (α2 − σ)[g(X,W )η(Y )− g(Y,W )η(X)]

+
1

2
{η(Y )S(ϕX,W )− η(X)S(ϕY,W ) + S(Y, ξ)S(X,W )

− S(X, ξ)S(Y,W )} − r

6
{η(Y )g(ϕX,W )− η(X)g(ϕY,W )} = 0.(4.4)

Replacing X by ξ in the foregoing equation yields

− (α2 − σ)[η(W )η(Y ) + g(Y,W )] +
1

2
{S(ϕY,W )

+ S(Y, ξ)S(W, ξ)− S(ξ, ξ)S(Y,W )} − r

6
g(ϕY,W ) = 0.(4.5)
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Replacing W by ϕW and using (2.2), we obtain

(4.6) S(X,Y ) =
r

3
g(X,Y ) +

(r
3
− 3

)
η(X)η(Y ),

provided α2 = σ. That is, the spacetime is a perfect fluid spacetime. Thus we have
the following:

Theorem 4.1. A ϕ-Weyl semisymmetric Lorentzian para-Sasakian type spacetime
is a perfect fluid spacetime, provided α2 = σ .

From (1.3) and (4.6), we obtain

(4.7) kT (X,Y ) = −r
6
g(X,Y ) +

(r
3
− 3

)
η(X)η(Y ).

The above equation is of the form of a perfect fluid spacetime, where kp = − r
6 and

k(p+ µ) = ( r3 − 3) from which it follows that p = − r
6k and µ = − 1

k (3−
r
2 ).

Therefore the state equation is p− µ = 1
k (

r
3 − 3), that is, p = µ+ scalar. If the

scalar curvature is constant, then the state equation reduces to p = µ+ constant.

5. Ricci-semisymmetric Lorentzian Para-Sasakian Type Spacetime

In this section we deal with Lorentzian para-Sasakian type spacetime satisfying

(5.1) R.S = 0.

From (5.1) it follows that

(5.2) S(R(X,Y )Z,W ) + S(Z,R(X,Y )W ) = 0.

Replacing Z by ξ and using (2.9) and (2.10), we get

(α2 − σ){η(Y )S(X,W )− η(X)S(Y,W )}
+ 3(α2 − σ)2{g(Y,W )η(X)− g(X,W )η(Y )} = 0.(5.3)

Now putting Y = ξ in the foregoing equation, we obtain

(5.4) S(X,W ) = 3(α2 − σ)g(X,W ),

which implies that the manifold under consideration is an Einstein spacetime.
Now we consider perfect fluid spacetime obeying Einstein’s equation whose ve-

locity vector field is the characteristic vector field of the manifold. Then we get
from Einstein’s field equation

(5.5) S(X,Y )− r

2
g(X,Y ) = kT (X,Y ) = k[(µ+ p)η(X)η(Y ) + pg(X,Y )].

Using (5.4) in (5.5) and putting Y = ξ infers

3(α2 − σ)η(X)− r

2
η(X) = k[−(µ+ p)η(X) + pη(X)]
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(5.6) or, µ =
r − 6(α2 − σ)

2k
.

Now taking a frame field and contracting X and Y in (5.5), we obtain by using
(5.6)

(5.7) p =
−r − 6α2 + 6σ

6k
.

Equation (5.6) and (5.7) together yields that

(5.8) p+ µ = scalar.

Thus we have :

Theorem 5.1. A Ricci-semisymmetric Lorentzian para-Sasakian type spacetime is
an Einstein spacetime and the state equation is given by p+ µ= scalar.
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