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Abstract

Recent multi-core processors for smart devices use per-core dynamic voltage and frequency scaling (DVFS) that enables

independent voltage and frequency control of cores. However, because the conventional task scheduler was originally designed

for per-core DVFS disabled processors, it cannot effectively utilize the per-core DVFS and simply allocates tasks evenly across

all cores to core utilization with the same CPU frequency. Hence, we propose a novel task scheduler to effectively utilize per-

core DVFS, which enables each core to have the appropriate frequency, thereby improving performance and decreasing energy

consumption. The proposed scheduler classifies applications into two types, based on performance-sensitivity and allows a

performance-sensitive application to have a dedicated core, which maximizes core utilization. The experimental evaluations

with a real off-the-shelf smart device showed that the proposed task scheduler reduced 13.6% of CPU energy (up to 28.3%) and

3.4% of execution time (up to 24.5%) on average, as compared to the conventional task scheduler.

Index Terms: Dynamic voltage and frequency scaling, Low-power consumption, Multicore processors, Task scheduler

I. INTRODUCTION

One of the most significant problems for smart devices,

such as embedded and IoT devices, is short battery life [1].

To address this problem, manufacturers have employed per-

core dynamic voltage and frequency scaling (DVFS) enabled

multi-core processors, which allows independent voltage and

frequency control for each core. On multi-core processors

with per-core DVFS, an operating system module (called a

scaling governor) scales the frequency of each core individu-

ally based on core utilization. From this point of view, a task

scheduler can also scale the core frequency by changing the

core utilization by adjusting the amount of load allocated to

each core. The task scheduler must provide an efficient task

allocation method that allows the core to have the proper fre-

quency and considers its impacts on the scaling governor.

The conventional task scheduler for traditional multicore

processors (that do not allow per-core DVFS) do not con-

sider its impact on the scaling governor. Rather, it attempts

to allocate the given load evenly across all cores, assuming

that all cores have the same frequency. When there is a load

imbalance between cores, the task scheduler migrates a task

from a core with many tasks assigned to a core with fewer

tasks assigned. Unfortunately, this operation disturbs the

scaling governor from providing the proper frequency to

cores due to the mismatch in time granularity between the

task scheduler and the scaling governor.

To address the inefficiency of the conventional task sched-

uler, several task scheduling techniques have been proposed

for smart devices with per-core DVFS-enabled multi-core

processors [2, 3]. These techniques use application charac-

teristics, such as data dependencies and user interactions, to

allocate the appropriate application to cores. However, these

techniques are difficult to apply to general systems, because
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they significantly degrade the system performance for power

reduction.

To overcome these limitations, and to simultaneously

achieve performance improvement and energy reduction, this

study proposed a novel task scheduler called ETS (efficient

task scheduler). The proposed task scheduler isolates perfor-

mance-sensitive applications from performance-insensitive

applications, and allows performance-sensitive applications

to have cores exclusively. Therefore, the scaling governor

can deliver higher frequencies to the cores running perfor-

mance-sensitive applications, which increases the application

performance. To classify the sensitivity of the applications at

runtime, ETS exploits that the child-thread configuration is

different depending on the performance sensitivity of the

applications.

The proposed task scheduler demonstrated the following

contributions:

1) By classifying applications based on latency sensitivity,

ETS reduced energy consumption by avoiding unnecessary

frequency scaling.

2) By allowing performance-sensitive applications to have

dedicated cores, ETS increased application performance by

scaling the frequency of cores running performance-sensitive

applications.

The experiments performed on a real off-the-shelf smart

device showed that the proposed task scheduler achieved a

13.6% average reduction in CPU energy and a 3.4% average

performance enhancement, as compared to the conventional

task scheduler.

The remainder of this paper is organized as follows. Sec-

tion II briefly introduces previous studies on task scheduling

techniques for multi-core processors. We present the back-

ground and motivation of our work in Section III. Section IV

explains our proposed task scheduler, ETS, and Section V

evaluates ETS in terms of performance and CPU energy sav-

ings. Finally, the paper concludes in Section VI.

II. RELATED WORK

A. Task Scheduler for Per-Core DVFS Disabled Mul-
ticore Processors

For multi-core processors without per-core DVFS, many

task scheduling techniques have been proposed. Merkel et al.

tried to avoid contention for shared resources, such as cache

and memory subsystems between different tasks [4]. To find

the resource contention between the tasks, they estimated the

resource utilization of each task. Quan and Pimentel pro-

posed a task scheduler that considers inter-task communica-

tion costs in multi-media applications [5]. To reduce

communication costs, this technique assigns tasks that com-

municate with each other to the same core. For real-time sys-

tems, several schemes have been proposed to assign tasks to

different cores and determine the optimal core frequency

based on the predefined deadline of each task [6, 7]. How-

ever, these techniques do not consider their impact on the

per-core DVFS-based scaling governor. They only consider

multi-core processors where all cores run at the same fre-

quency.

B. Task Scheduler for Heterogeneous Multicore Pro-
cessors

For heterogeneous multi-core processors composed of

high-performance big cores and low-power small cores, the

previously proposed task scheduling schemes mainly focus

on the difference between big and small cores. Craeynest et

al. proposed a task scheduling technique that assigns tasks

with a large amount of memory level parallelism (MLP) to

big cores and tasks with a large amount of instruction level

parallelism (ILP) to small cores [8]. Ren et al. assigned tasks

with a long execution time to the big cores and tasks with

short execution time to the small cores [9]. Another task

scheduling technique is proposed to consider the thermal

constraints of heterogeneous multi-core processors. In the

case of a thermal emergency, their technique assigns all the

running tasks to the small cores to cool down the big cores

quickly [10]. However, the techniques above do not consider

their impact on the scaling governor for per-core DVFS.

C. Task Scheduler for Per-core Enabled Multicore 
Processors

For multi-core processors with per-core DVFS in smart

devices, several task scheduling schemes have been pro-

posed. Qiu et al. proposed a task scheduling technique that

considers the data dependency between tasks [2]. Their tech-

nique constructs a graph that represents the dependency of

tasks in an application, which determines the execution

sequence of the tasks and the frequency of the cores. How-

ever, since the number of applications in the market is sig-

nificantly increasing, it is not practical to construct a graph

for all applications. Tseng et al. proposed another task sched-

uling technique that considers user attention and interaction

Table 1. Application classification 

Type Definition Example

Performance-

sensitive

Execution time is important 

to users

File extractor, virus scanner, 

and media file protector

Performance-

insensitive

QoS rather than perfor-

mance is important to users*

Media player, multimedia-

based game, widget, and 

system daemon

* Insignificant applications (the applications whose load is very small) are

also performance-insensitive, since their execution time is not important

to users. Due to the small load, they do not require large CPU resources.
223 http://jicce.org
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of applications [3]. This scheduling algorithm classifies

applications into three levels: high (foreground applications),

medium (system threads), and low (background applica-

tions), depending on the user's attention and interaction. This

scheme reduces resources for less sensitive applications,

while providing resources to more sensitive applications.

However, this technology suffers from significant perfor-

mance overhead for power reduction, which is not accept-

able to users. Kim et al. proposed another task scheduler for

heterogeneous multi-core processors [11]. To take advantage

of the heterogeneous processors that have different-sized

cores, they differentiate between multimedia and non-multi-

media applications and allocate them to different cores.

Because multimedia applications do not require high com-

puting power commonly, they can save core energy con-

sumption by mapping them to small cores.

III. BACKGROUND AND MOTIVATION

A. Application Classification 

Smart device applications can be classified into two types

depending on the sensitivity to the execution time, as shown

in Table 1. For performance-sensitive applications, users can

recognize performance degradation when the execution time

increases. In contrast, for performance-insensitive applica-

tions, users only complain when the quality of service (QoS)

is degraded. Because of this difference, applications with

different types require different amounts of CPU resources.

For performance-sensitive applications, it is appropriate to

run on the core at the highest possible frequency, because the

execution time typically decreases when operating at higher

frequencies. Conversely, performance-insensitive applica-

tions only need the amount of CPU resources that does not

degrade QoS. Hence, running performance-insensitive appli-

cations on high-frequency cores results in energy waste. In

addition, different types of applications usually have differ-

ent CPU utilizations. Performance-sensitive applications tend

to have high CPU utilization, as they mainly consist of aperi-

odic and CPU-intensive operations, such as string compari-

son. In contrast, performance-insensitive applications have

lower CPU utilization than performance-sensitive applica-

tions, because they usually consist of periodic operations.

Our experiments with commercialized applications showed

the average CPU utilization of performance-sensitive appli-

cations was 77.9%, significantly higher than that of perfor-

mance-insensitive applications (26.8%).

B. Conventional Task Scheduler

The conventional task scheduler consists of intra- and

inter-core task scheduling. The intra-core task scheduling is

a completely fair scheduling (CFS), which fairly distributes

CPU time slices to applications run in a core [12]. The inter-

core task scheduling performs load balancing when there is a

load imbalance between the cores. It migrates an application

from a core with a higher load to another core with a lower

load [13]. Fig. 1 shows the behavior of the conventional task

scheduler as an example. We suppose application A is per-

formance-sensitive and run on Core 0, while B1, B2, and C

are performance-insensitive applications run on Core 1. 

Because the CPU utilization of applications A, B, and C

are different, there can be a load imbalance between Core 0

and Core 1. Hence, the load balancing migrates application

C from Core 1 to Core 0 (middle of Fig. 1) to balance the

load across all cores. In this case, as two different applica-

tions are run on Core 0 simultaneously, the CFS distributes

the time slices to each application evenly, which results in

the scaling governor adjusting the CPU frequency lower.

Unfortunately, this modulated frequency is not suitable for

both applications; it is higher for performance-insensitive

applications and lower for performance-sensitive applica-

tions. The time granularity of the task scheduler (0.6–7 ms

[14]) is much finer than that of the scaling governor (10 ms

~ 1 s [15]) because of the overhead of voltage and frequency

transition [16]. Therefore, we cannot scale the CPU fre-

quency as much as needed. Moreover, because CFS provides

limited time slices to application A, the conventional task

scheduler incurs not only energy waste of application C, but

also performance degradation of application A.

Fig. 1. Example of the conventional task scheduler. The load balancer
performs the task migration (inter-core task scheduling) and the intra-core

scheduling (CFS) fairly distributes time slices to all applications. 
https://doi.org/10.6109/jicce.2020.18.4.222 224
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IV. ETS: EFFICIENT TASK SCHEDULING FOR 

PER-CORE DVFS MULTICORE PROCESSORS

To address the inefficiency of the conventional task sched-

uler, we proposed an efficient task scheduler called ETS,

which considered its impact on the per-core DVFS-based

scaling governor. Because different types of applications

require different amounts of CPU resources, the proposed

scheduling algorithm isolated performance-sensitive applica-

tions from performance-insensitive applications and scaled

the appropriate frequency to individual cores. In addition, by

providing more time slices for performance-sensitive appli-

cations, ETS reduced the execution time of performance-sen-

sitive applications.

A. Application Type Classification

Our task scheduler classified the types of applications

based on the fact that media-based applications and insignif-

icant applications are performance-insensitive. Fig. 2 shows

how ETS classifies the application types. To differentiate

insignificant applications from other applications, ETS veri-

fies how and when an application is launched. Since most

insignificant applications, such as widgets and system dae-

mons, are launched automatically and immediately after sys-

tem boots-up, such applications are classified as performance-

insensitive applications. In contrast, when the application is

manually launched by the user, the ETS examines the child

thread list of the application. As media-based applications

mainly consist of periodic operations that commonly play

audio tracks (e.g., music, video, and game), there is a spe-

cific thread for audio playback in the list of child threads. By

exploiting this characteristic, our task scheduler classified

the application as a performance-insensitive type if there was

a specific thread in the list. Otherwise, the application was

classified as a performance-sensitive application. Even in the

case where a performance-insensitive application does not

have a specific thread, our proposed ETS did not degrade its

QoS because of our allocation algorithm (see details in Sec-

tion IV.B.). In a real implementation, ETS classified a group

of specific threads as a performance-insensitive application.

Note that the grouping operation incurred negligible over-

head, and thus can be performed at runtime. 

B. ETS Allocation Algorithm

Fig. 3 shows the ETS allocation algorithm for newly

launched applications. If application A is launched, for

example, ETS first classifies the application type through the

proposed application classification algorithm (Section IV.A).

After verifying the application type, ETS first checks the

number of other running applications. When there is no other

running application, it assigns A to core 0. Otherwise, appli-

cation A is assigned to other cores depending on its type. 

If application A is performance-sensitive, the proposed

algorithm checked for cores that are not currently being

used and then assigned the application to an unused core.

In this case, application A occupies only one core. On the

other hand, if there are no unused cores, the application

would be assigned to a core with the lowest utilization.

Because the number of running performance-sensitive

applications is usually less than that of cores in smart

devices [3][17], it is generally possible for performance-

sensitive applications to have the cores exclusively. On the

other hand, if application A is performance-insensitive,

ETS would check the cores where other performance-insen-

sitive applications are running. When there are such cores,

A is allocated to the core that has the lowest utilization

among the corresponding cores. Otherwise, ETS finds an

unused core and allocates A to an unused core, or if there

are no unused cores, it allocates A to the core with the least

utilization. Even if an application type is misclassified as

performance-sensitive, the QoS of performance-sensitive

applications is not compromised. The proposed task sched-

uler allocated misclassified applications to have exclusive

cores, which can lead to energy waste, but QoS was not

Fig. 3. Allocation algorithm of ETS.Fig. 2. Allocation type classification of ETS.
225 http://jicce.org
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degraded. To preserve the QoS of performance-insensitive

applications, our proposed task scheduler included the load

balancing algorithm for the cores where the performance-

insensitive applications are running, which is discussed in

the following subsection.

C. Load-Balancing Algorithm

The conventional allocation algorithm assigns perfor-

mance-insensitive applications, such as media-based applica-

tions, to cores without considering QoS preservation. To

preserve the QoS of the applications, our task scheduler also

includes the load balancing algorithm. The proposed load-

balancing algorithm is not for performance-sensitive applica-

tions, because the sensitive applications exclusively occupy

cores resulting from the allocation algorithm. 

The load-balancing algorithm is invoked when there is

potential QoS degradation due to high utilization even in the

case of the highest frequency in one of the cores where per-

formance-insensitive applications are running. Our algorithm

assumed that there was potential QoS degradation in a core

when the frequency of the corresponding core reached the

highest level and its utilization exceeded 80%. To maintain

QoS, ETS migrated one of the performance-insensitive

applications to an unused core and balanced the load across

the cores where performance-insensitive applications were

running. Note that because performance-insensitive applica-

tions typically have low CPU utilization, load-balancing

algorithms are rarely triggered, and thus the migration over-

head is negligible.

V. EVALUATION

A. Experimental Environment

ETS evaluation was performed on a real off-the-shelf

smart device. The smart device had a per-core DVFS enabled

quad-core processor [18], which supported 12 frequency

steps (0.38-1.51 GHz) for each core. To employ real applica-

tion cases in the evaluation, we chose 11 commercialized

applications. In addition, a synthetic performance-sensitive

application was selected to represent the case where multiple

performance-sensitive applications are executed simultane-

ously, which is rare in the real world. Each application is

explained in Table 2. We selected five applications (PDF

Reader, Amazing Alex, Music Player, Swampy, and MX

Player) based on the Moby benchmark [19]. Furthermore, six

applications that have more than one million download

counts were selected (Kaspersky, Gallery Lock, Zipper, Goo-

gle Calendar, Blackbox, and Widget). We did not choose

multiple applications from one benchmark because real use

case combinations are difficult to find. In other words, users

are not running Music Player and MX Player (both based on

Moby benchmarks) together to listen to music.

As shown in Table 3, there are 16 practical application

combinations to represent real-use cases [11]. Each combina-

tion was composed of performance-sensitive and perfor-

mance-insensitive applications. In our experiments, one

performance-insensitive application was executed in the

foreground, while the other applications were run in the

background. These combinations were also used in the previ-

ous work on the task scheduler of smart devices [3, 11]. For

certain combinations that require user inputs (Nos. 15 and

16), we made a series of inputs similar to the real use cases

by implementing an automatic input generator. We evaluated

the proposed task scheduler using the conventional scheduler

in terms of performance and energy consumption. Both task

Table 2. Application combinations [11]

No. Applications

1 Kaspersky and Amazing Alex

2 Kaspersky and Music Player

3 Kaspersky and Swampy

4 Kaspersky and MX Player

5 Gallery Lock and Amazing Alex

6 Gallery Lock and Music Player

7 Gallery Lock and Swampy

8 Gallery Lock and MX Player

9 Zipper and Amazing Alex

10 Zipper and Music Player

11 Zipper and Swampy

12 Zipper and MX Player

13 Kaspersky, Music Player, Blackbox, and 2 Widgets

14 Kaspersky, Music Player, Synthetic Performance-sensitive 

Application, and 2 Widgets

15 PDF Reader and Music Player

16 Google Calendar and Music Player

Table 3. Application types and descriptions

Type Name Description

Performance-

Sensitive 

Application

Kaspersky Virus scanner application

Gallery Lock Video file protector application

Zipper File compressor/extractor application

PDF Reader PDF file reader application

Google Calendar Calendar application

Synthetic Performance-

sensitive Application

CPU-intensive synthetic application 

(for set 14 only)

Performance-

Insensitive

Application

Amazing Alex Game w/ low CPU utilization

Music Player Music player application

Swampy Game w/ high CPU utilization

MX Player Video player application

Blackbox Video recorder application

Widget Home screen and battery widgets
https://doi.org/10.6109/jicce.2020.18.4.222 226
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schedulers used an on-demand governor as a scaling gover-

nor, which adjusted the core frequency depending on the

core utilization [15]. In addition, the same DPM governor

was used for all the experiments. To accurately measure

energy consumption, we used an external power measuring

device with a measurement error rate of 1% and ran all cases

three times to ensure reliable experimental results.

B. Impact on Performance

Fig. 4 shows the execution time of performance-sensitive

applications. ETS reduced the execution times by 3.4% on

average and 24.5% for the best case, as compared to those of

the conventional ETS. Because ETS allowed a performance-

sensitive application to exclusively occupy a core, it allowed

the scaling governor to provide a higher average CPU fre-

quency to performance-sensitive applications (left side of

Fig. 5). In addition, the proposed scheduler provided more

time slices to performance-sensitive applications, which

resulted in performance improvement.

As shown in Fig. 4, for the application sets having Kasper-

sky (1, 2, 3, 4, 13, and 14 sets), ETS significantly reduced

the average execution time by 13.9% as compared to the

conventional scheduler. As a common feature of Kaspersky

is that it has many CPU-intensive operations, its perfor-

mance can be enhanced by encouraging the scaling governor

to provide the highest CPU frequency to the corresponding

core. On the other hand, for the different application sets in

Figure 4 (sets from 5–12, 15, and 16), the execution time of

the proposed scheduler was slightly longer than the conven-

tional. Unlike Kaspersky, such applications have a large I/O

waiting time due to the large number of storage accesses.

For example, the I/O waiting time for Gallery Locks uses up

to 40%. Hence, the execution time is mainly dependent on

the storage access latency, not on the CPU processing

latency. Thus, ETS can barely improve performance even if

it drives the scaling governor to provide higher CPU fre-

quency to the applications.

C. Impact on Energy Consumption

Fig. 6 shows the normalized CPU energy consumption of

the ETS. Because there is no way to accurately measure

CPU energy consumption in our experimental environment,

CPU energy consumption was estimated from the total sys-

tem energy, assuming that it accounted for 30% [17, 20]. As

shown in Fig. 6, ETS reduces CPU energy consumption by

13.6% on average (up to 28.3%) compared to the conven-

tional task scheduler, because it separates performance-

insensitive applications from performance-sensitive applica-

tions. Thus, allowing the scaling governor to provide a lower

average frequency of CPUs running performance-insensitive

applications.

For application sets having Gallery Lock, Zipper, and

interactive applications (i.e., sets 5-12, 15, and 16), ETS

saved energy mainly due to CPU power reduction. For these

sets, although the execution time using ETS was slightly lon-

ger than the conventional scheduling algorithm as explained

before, the proposed scheduler significantly saved the CPU

power consumption (15.9% on average) by preventing the

scaling governor from providing unnecessarily high frequency

to cores running performance-insensitive applications. On

the other hand, for application sets including Kaspersky (sets

Fig. 6. Normalized CPU energy consumption.

Fig. 4. Normalized execution time.

Fig. 5. CPU frequency provided to performance-sensitive applications and
performance-insensitive applications. 
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1-4, 13, and 14), ETS reduced energy consumption mainly

through performance enhancement. Since ETS provided the

highest frequency to the core running Kaspersky, it did not

significantly reduce CPU power consumption. However, it

was possible to achieve a 13.6% average energy reduction

by significantly improving the execution time of Kaspersky,

as explained in Section VI.A.

VI. CONCLUSIONS

Recent smart devices adopt multi-core processors that

allow per-core DVFS, which enables per-core voltage and

frequency scaling. However, the conventional task scheduler

does not consider its impact on the per-core DVFS-based

scaling governor and may provide inappropriate CPU fre-

quency to the cores, which can degrade application perfor-

mance and increase energy waste. To address this problem,

we proposed an efficient task scheduler called ETS that con-

sidered the operations of the scaling governor. ETS catego-

rized application types according to performance sensitivity,

allowing performance-sensitive applications to have exclu-

sive cores, and scaling CPU frequencies as needed to achieve

optimal performance. Because the classification was performed

by referring to the child thread list of each application, it can

be done without noticeable overheads at runtime. In addi-

tion, ETS reduced energy waste by avoiding unnecessary

frequency scaling for performance-insensitive applications

performed by the scaling governors. Compared to the con-

ventional task scheduler, the experimental results showed

that the proposed task scheduler reduced the CPU energy by

13.6% (up to 28.3%), as well as the execution time by 3.4%

(up to 24.5%) on average.
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