DOI QR코드

DOI QR Code

Design of FMCW radar waveform for flow measurement

유량 측정을 위한 FMCW 레이다 파형 설계

  • Lee, Changki (Department of Radar Software, Hanwha Systems)
  • Received : 2019.09.06
  • Accepted : 2019.10.02
  • Published : 2020.01.31

Abstract

A commercial flow measurement radar sensor estimates a quantity of flowed water using surface flow rate. In this way, the amount of water flowing per unit time cannot be measured accurately because of using an estimation result and it can't response environmental changes. For more accurate flow measurements we need width of waterway, water level and distance that water moved per unit time. Commonly two sensors are used to measure water level and flow rate. In this paper, we propose a method to simultaneously measure the water level and surface flow velocity using a single FMCW radar sensor and design the transmission waveform. In order to verify the waveform design, received signal is modelled based on transmission waveform. In addition, we consider phenomenons and problems that may occur in signal processing.

현재 상용화되어 있는 유량 측정 레이더 센서는 표면 유속을 이용하여 유량을 측정하는 방법을 사용한다. 이러한 방식으로는 표면 유속만으로 유량을 추정하는 것이기 때문에 단위 시간당 흐르는 물의 양을 정확하게 측정할 수 없다. 보다 정확한 측정을 위해서는 수위와 유속 정보 모두가 필요하며, 이에 따라 일부 상용 계측기는 수위와 유속을 각각 측정하는 두 개의 센서를 이용하여 유량을 산정하는 방식을 채택하고 있다. 본 논문에서는 하나의 FMCW 레이다 센서를 이용하여 수위와 유속을 동시에 측정할 수 있는 방법에 대하여 제안하고, 이를 위한 FMCW 레이다 송신 파형을 설계한다. 또한, 송신 파형을 기반으로 수신 신호를 모델링하여 수위 및 유속 측정 시 발생할 수 있는 문제점들에 대해 고찰하고자 한다.

Keywords

References

  1. D. S. Kim, S. K. Yang, and W. Y. Jung, "Error Analysis for Electromagnetic Surface Velocity and Discharge Measurement in Rapid Mountain Stream Flow," Journal of Environmental Science International, 23(4), pp. 543-552, Apr. 2014. https://doi.org/10.5322/JESI.2014.4.543
  2. Y. S. Kim, N. I. Won, J. W. Noh, and W. C. Park, "Development of High-performance Microwave Water Surface Current Meter for General Use to Extend the Applicable Velocity Range of Microwave Water Surface Current Meter on River Discharge Measurements," Journal of Korea Water Resour. Assoc. vol. 48, no. 8, pp. 613-623, Aug. 2015. https://doi.org/10.3741/JKWRA.2015.48.8.613
  3. S. Nuwan, and W. H. Kim, "Design and Performance Analysis of Zoom-FFT Based FMCW Radar," Journal of Korea Society of Communication and Space Technology, K9-2-8, pp. 38-44, May. 2015.
  4. J. G. Lee, "A Study on Estimation of Doppler Frequency in a Current Velocity Measurement Radar," Journal of the Korea Institute of Information and Communication Engineering, vol. 17, no. 7, pp. 1551-1557, Jul. 2013. https://doi.org/10.6109/jkiice.2013.17.7.1551
  5. J. A. Park, and S. C. Song, "Leakage Signal Canceller and Adaptive Algorithm in Millimeter-Wave Seeker," THE Journal of Korean Institute of Electromagnetic Engineering and Science, 30(1), pp. 88-94, Jan. 2019. https://doi.org/10.5515/KJKIEES.2019.30.1.88
  6. B. J. Jang, J. G. Yook, W. Na, and M. Q. Lee, "Noise Analysis and Measurement for a CW Bio-Radar System for Non-Contact Measurement of Heart and Respiration Rate," Journal of Korean Institute of Electromagnetic Engineering and Science, 19(9), pp. 1010-1019, Sep. 2008. https://doi.org/10.5515/KJKIEES.2008.19.9.1010
  7. D. S. Kim, H. S. Lee, J. P. Kim, and S. J. Kim, "Design and Modeling of a DDS Driven Offset PLL with DAC," Journal of the Institute of Internet, Broadcasting and Communication, vol. 12, no.5, pp. 1-9, Dec. 2012. https://doi.org/10.7236/JIWIT.2012.12.5.1