DOI QR코드

DOI QR Code

On-Site Earthquake Early Warning System Design and Performance Evaluation Method

현장 지진조기경보시스템의 설계 및 성능평가 방법

  • Choi, Hun (Department of Electronic Engineering, Dongeui University)
  • Received : 2019.12.11
  • Accepted : 2020.01.22
  • Published : 2020.02.29

Abstract

Recently, in order to improve the performance of the Earthquake Early Warning System (EEWS) and to supplement the effects of earthquake disaster prevention in epicenters or near epicenters, development of on-site EEWS has been attempted. Unlike the national EEWS, which is used for earthquake disaster prevention by using seismic observation networks for earthquake research and observation, on-site EEWS aims at earthquake disaster prevention and therefore requires efficient design and evaluation in terms of performance and cost. At present, Korea lacks the necessary core technologies and operational know-how, including the use of existing EEWS design criteria and evaluation methods for the development of On-Site EEWS as well as EEWS. This study proposes hardware and software design directions and performance evaluation items and methods for seismic data collection, data processing, and analysis for localization of On-Site EEWS based on the seismic accelerometer requirements of the Seismic and Volcanic Disaster Response Act.

최근 지진조기경보시스템(EEWS)의 성능 개선과 진앙지 또는 진앙 근처 지역의 지진방재 효과를 보완하기 위해 현장 지진조기경보시스템(On-Site EEWS)의 개발이 시도되고 있다. 지진에 대한 연구 및 관측을 위한 지진관측망을 이용하여 지진 방재에 활용하는 국가 차원의 EEWS와 달리 On-Site EEWS는 지진방재를 목적으로 하므로 성능 및 비용 측면의 효율적인 설계와 평가가 필요하다. 현재 우리나라는 EEWS 뿐만 아니라 On-Site EEWS 개발에 기존 EEWS의 설계 기준 및 평가방법을 사용하는 등 필요한 핵심기술과 운영 노하우가 미흡한 실정이다. 본 연구에서는 지진·화산재해대책법에서 규정하는 지진 가속도계의 요구 사항을 기반으로 On-Site EEWS의 국산화 개발에 필요한 지진 데이터 수집, 데이터 처리 및 분석 부분의 하드웨어 및 소프트웨어적 설계 방향과 성능평가 항목 및 방법을 제안한다.

Keywords

References

  1. J. Aschau, and A. N. Kuppers, Early Warning Systems for Natural Disaster Reduction, Springer, 2003.
  2. Y. M. Wu, and H. Kanamori, "Development of an earthquake early warning system using real-time strong motion signals," International Journal of Sensors, vol. 8, pp. 1-9, DOI: 10.3390/s8010001, Jan. 2008.
  3. S. D'Amico, Earthquake Research And Analysis : New Frontiers In Seismology, Malta, 2013.
  4. M. Bose, E. Hauksson, K. Solanki, H. Kanamori, and T. H. Heaton, "Real-time testing of the on-site warning algorithm in Southern California and its performance during the July 29, 2008 Mw 5.4 Chino Hills earthquake," Letters of Geophysics Research, vol. 36, L00B03, DOI:10.1029/2008GL036366, 2009.
  5. M. Picozzi, S. Colombelli, A. Zollo, M. Carranza, and E. Buforn, "A Threshold-Based Earthquake Early-Warning System for Offshore Events in Southern Iberia," Journal of Pure and Applied. Geophysics, vol. 172, pp. 2467-2480, DOI:10.1007/s00024-014-1009-2, Dec. 2015.
  6. S. Colombelli, A. Caruso, A. Zollo, G. Festa, and H. Kanamori, "A P wave-based, on-site method for earthquake early warning," Letters of Geophysical Research, vol. 42, pp. 1390-1298, DOI:10.1002/2014GL063002, Feb. 2015.
  7. H. Zhang, X. Jin, Y. Wei, J. Li, L. Kang, S. Wang, L. Huang, and P. Yu, "An Earthquake Early Warning System in Fujian, China," Bulletin of the Seismological Society of America, vol. 106, no. 2, pp. 755-765, DOI:10.1785/0120150143, Mar. 2016.
  8. H. Choi, "Automatic Seismic P-Wave Detection Algorithm Using Variations of Impact Momentum," Transactions of the Korean Institute of Electrical Engineers, vol. 67, no. 7, pp. 884-891, DOI:10.5370/KIEE.2018.67.7.884, Jun. 2018.