DOI QR코드

DOI QR Code

CNN-based Building Recognition Method Robust to Image Noises

이미지 잡음에 강인한 CNN 기반 건물 인식 방법

  • Lee, Hyo-Chan (Oceanic IT Convergence Technology Research Center, Hoseo University) ;
  • Park, In-hag (System Centroid Inc.) ;
  • Im, Tae-ho (Department of Information and Communication Engineering, Hoseo University) ;
  • Moon, Dai-Tchul (Oceanic IT Convergence Technology Research Center, Hoseo University)
  • Received : 2019.06.14
  • Accepted : 2020.01.16
  • Published : 2020.03.31

Abstract

The ability to extract useful information from an image, such as the human eye, is an interface technology essential for AI computer implementation. The building recognition technology has a lower recognition rate than other image recognition technologies due to the various building shapes, the ambient noise images according to the season, and the distortion by angle and distance. The computer vision based building recognition algorithms presented so far has limitations in discernment and expandability due to manual definition of building characteristics. This paper introduces the deep learning CNN (Convolutional Neural Network) model, and proposes new method to improve the recognition rate even by changes of building images caused by season, illumination, angle and perspective. This paper introduces the partial images that characterize the building, such as windows or wall images, and executes the training with whole building images. Experimental results show that the building recognition rate is improved by about 14% compared to the general CNN model.

인간의 눈과 같이 이미지에서 유용한 정보를 추출하는 기능은 인공지능 컴퓨터 구현에 필수적인 인터페이스 기술이다. 이미지에서 건물을 인식하여 추론하는 기술은 다양한 형태의 건물 외관, 계절에 따른 주변 잡음 이미지의 변화, 각도 및 거리에 따른 왜곡 등으로 다른 이미지 인식 기술 보다 인식률이 떨어진다. 지금까지 제시된 컴퓨터 비전(Computer Vision) 기반의 건물 인식 알고리즘들은 건물 특성을 수작업으로 정의하기 때문에 분별력과 확장성에 한계가 있다. 본 논문은 최근 이미지 인식에 유용한 딥러닝의 CNN(Convolutional Neural Network) 모델을 활용하는데 건물 외관에 나타나는 변화, 즉 계절, 조도, 각도 및 원근에 의해 떨어지는 인식률을 향상시키는 새로운 방법을 제안한다. 건물 전체 이미지와 함께 건물의 특징을 나타내는 부분 이미지들, 즉 창문이나 벽재 이미지의 데이터 세트를 함께 학습시키고 건물 인식에 활용함으로써 일반 CNN 모델 보다 건물 인식률을 약 14% 향상됨을 실험으로 증명하였다.

Keywords

References

  1. D.G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, Jan. 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  2. H. Bay, T. Tuytelaars, and L. V. Gool, "Speeded Up Robust Features (SURF)," Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346-359, Jun. 2008. https://doi.org/10.1016/j.cviu.2007.09.014
  3. E. Karami, S. Prasad, and M. Shehata, "Image Matching Using SIFT, SURF, BRIEF and ORB: Performance Comparison for Distorted Images," in Proceedings of the 2015 Newfoundland Electrical and Computer Engineering Conference, St. johns, Canada, 2015.
  4. T. Surasak, I. Takahiro, C. Cheng, C. Wang, and P. Sheng, "Histogram of oriented gradients for human detection in video," in Proceeding of the 5th International Conference on Business and Industrial Research, Bangkok, Thailand, 2018.
  5. J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, L. Wang, G. Wang, J. Cai, and T. Chen, "Recent advances in convolutional neural networks," Pattern Recognition, vol. 77, pp. 354-377, May. 2018. https://doi.org/10.1016/j.patcog.2017.10.013
  6. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradientbased learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998. https://doi.org/10.1109/5.726791
  7. J. Li, and N. Allinson, "Building Recognition Using Local Oriented Features," IEEE Transactions on Industrial Informatics, vol. 9, no. 3, pp. 1697-1704, Aug. 2013. https://doi.org/10.1109/TII.2013.2245910
  8. N. Hascoet, and T. Zaharia, "Building recognition with adaptive interest point selection," in 2017 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, USA, Jan. 2017.
  9. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C., Maupertuis, D. "Visual Categorization with Bags of Keypoints," In Workshop on Statistical Learning in Computer Vision, ECCV, Prague, 2004.
  10. C.-C. Chang, and C.-J. Lin, "LIBSVM," ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, pp. 1-27, Apr. 2011.
  11. J. D. Farfan-Escobedo, L. Enciso-Rodas, and J. E. VargasMuaoz, "Towards accurate building recognition using convolutional neural networks," in 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Cusco, Peru, 2017.
  12. Gerard Biau, "Analysis of a Random Forests Model," Journal of Machine Learning Research, vol. 13, no. 38, pp. 1063-1095, 2012.
  13. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the Inception Architecture for Computer Vision," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016.
  14. S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, Jun. 2017. https://doi.org/10.1109/TPAMI.2016.2577031
  15. J. Redmon, and A. Farhadi, "YOLO9000: Better, Faster, Stronger," in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017.