Development of High Resolution Iris Camera Module using IoT Device

IoT 디바이스를 활용한 고해상도 홍채 카메라 모듈 개발

  • Seo, Jin-beom (Department of Information Security, Daejeon University) ;
  • Cho, Young-bok (Department of Information Security, Daejeon University)
  • Received : 2019.09.19
  • Accepted : 2019.10.15
  • Published : 2020.03.31


Currently used iris cameras are expensive and have many limitations in their use. Existing iris cameras are inconvenient in interworking with newly developed software, and light reflections generated during iris photography are inadequate for medical use. Therefore, it is impossible to utilize the existing camera to take an image by yourself. In this paper, the iris camera is newly constructed so that the iris can be photographed by ourselves and the area of interest can be seen well. Anyone can easily wear glasses-type iris cameras to acquire images using IoT devices, and the acquired images are linked to the iris analysis program and used to read genetic weak parts. The proposed iris camera module automatically provides light reflection, shake, and accurate focus when capturing images, increasing the accuracy of image analysis to 91.49%. In addition, we have proved through experiments that one image processing time is fast as 0.007ms due to accurate image input.

현재 사용되고 있는 홍채 카메라는 고가이며 사용적인 부분에서 제한점을 많이 가지고 있다. 기존 홍채 카메라는 새롭게 개발된 소프트웨어와의 연동에 불편함을 가지고 있고, 홍채 촬영 시 발생하는 빛 반사는 의료용으로 사용하기에 부적합하다는 문제점을 갖는다. 따라서 기존 카메라를 이용해 스스로 이미지 촬영을 위해서는 활용이 불가능한 상태이다. 본 논문에서는 스스로 홍채 촬영이 가능하면서 우리의 관심영역을 잘 볼 수 있도록 홍채카메라를 새롭게 구성한다. IoT 디바이스를 이용해 누구나 손쉽게 안경형 홍채카메라를 착용하고 영상을 획득할 수 있으며 획득된 영상은 홍채 분석 프로그램과 연동되어 유전적 약한 부분을 판독해 주는데 활용하고자 한다. 제안된 홍채 카메라 모듈은 영상 촬영시 빛 반사, 흔들림 및 정확한 초점을 자동으로 제공해주기 때문에 영상분석의 정확도를 91.49%까지 높여주고, 정확한 영상입력으로 인해 하나의 이미지 처리시간이 0.007ms로 빠르게 실행됨을 실험을 통해 증명하였다.



  1. M. S. Jo, "An analysis of Factors Affecting Quality of Life through the analysis of Public Health Big Data," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 6, pp. 835-841, Jun. 2018.
  2. C. M. Roberto, O. Z. Alverto, G. Vicente, M. Jose, and G. Saul, "Application of IoT with haptics interface in the smart manufacturing industry," International Journal of Combinatorial Optimization Problems and Informatics, vol. 10, no. 2, pp. 57-70, Aug. 2019.
  3. H. Y. Jung, "Iris Diagnosis according to Iris Constitution with Focus on the Large Intestine Domain," published in Sunmoon University Graduate School of Integrated Medicine, vol. 6, pp. 5, Aug. 2012.
  4. Iris Publishers [Internet]. Available:
  5. E.S Choi. "Study of relationship between hysteropathy and Bowel Disease in iridology," published in Sun Mon University, vol. 8, no. 6, pp. 679-698, Jun. 1986.
  6. J. H. Rim, "Iris Diagnosis By The Disease Concepts Of Traditional Medicine," Ph. D. Dissertation, Department of Natural Healing Sciences Dongbang Graduate School, 2008.
  7. D. R. Bamer, Practical Iridology and Sclerology, Woolland Publishing, 1996.
  8. Y. B. Cho, S. H. Lee, and M. K. Kim, "A Secure Telemedicine System for Smart Helthcare Service," Journal of Korea Institute of Information and Communication Engineering, vol. 21, no. 1, pp. 205-214, Jan. 2017.
  9. K. Munstedt, S. El-Safadi, F. Bruck, M. Zygmunt, A. Hackethal, and H. R. Tinneberg, "Can iridology detect susceptibility to cancer? A prospective case-controlled study," Journal of Alternative & Complementary Medicine, vol. 11, pp. 515-519, Jul. 2005.
  10. Y. B. Cho, S. H. Woo, and S. H. Lee, "An Iris Detection Algorithm for Disease Prediction based Iridology," Journal of Korea, vol. 21, no. 1, pp.107-114, Jun. 2017.
  11. S. M. Gang, and J. J. Lee, "Depth Map Extraction from the Single Image Using Pix2Pix Model," Journal of Korea Multimedia Society, vol. 22, no. 5, pp. 547-557. Apr. 2019.
  12. I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, "Deeper Depth Prediction with Fully Convolutional Residual Networks," Proceeding of 2016 Fourth Inter national Conference on 3D Vision, pp. 239248, 2016.