DOI QR코드

DOI QR Code

A New Design of Signal Constellation of the Spiral Quadrature Amplitude Modulation

나선 직교진폭변조 신호성상도의 새로운 설계

  • Li, Shuang (Department of Electrical and Electronic Engineering, Gyeongsang National University) ;
  • Kang, Seog Geun (Department of Semiconductor Engineering, Gyeongsang National University)
  • Received : 2019.08.28
  • Accepted : 2019.09.30
  • Published : 2020.03.31

Abstract

In this paper, we propose a new design method of signal constellation of the spiral quadrature amplitude modulation (QAM) exploiting a modified gradient descent search algorithm and its binary mapping rule. Unlike the conventional method, the new method, which uses and the constellation optimization algorithm and the maximum number of iterations as a parameter for the iterative design, is more robust to phase noise. And the proposed binary mapping rule significantly reduces the average Hamming distance of the spiral constellation. As a result, the proposed spiral QAM constellation has much improved error performance compared to the conventional ones even in a very severe phase noise environment. It is, therefore, considered that the proposed QAM may be a useful modulation format for coherent optical communication systems and orthogonal frequency division multiplexing (OFDM) systems.

본 논문에서는 변형 경사하강검색법을 이용한 새로운 나선 직교진폭변조 신호성상도와 이를 위한 이진사상규칙을 제시한다. 기존 방법과는 달리 새로운 검색법은 반복설계를 위한 파라미터로 최대 반복 횟수와 함께 성상도 최적화 알고리즘을 사용하여 위상잡음에 더욱 강인한 나선 직교진폭변조 성상도를 생성한다. 또한, 제시된 이진사상기법은 신호성상도에서 동일한 경계를 공유하는 필드 수를 조정함으로써 성상도의 평균 해밍거리를 크게 감소시키는 것으로 나타났다. 그 결과, 제안된 나선 직교진폭변조는 매우 심한 수준의 위상잡음 환경에서도 기존 성상도에 비하여 훨씬 향상된 심볼오류성능을 가지는 것으로 확인되었다. 따라서 제안된 나선 직교진폭변조는 위상잡음의 영향이 크게 나타나는 코히어런트 광통신시스템과 직교 주파수분할다중화 시스템에 유용한 변조방법인 것으로 판단된다.

Keywords

References

  1. J. G. Proakis, and M. Salehi, Digital Communications, 5th ed., New York, NY: McGraw-Hill, 2008.
  2. S. Xia, and F. Fu, "On the average Hamming distance for binary codes," Discrete Applied Mathematics, vol. 89, no. 1-3, pp. 269-276, Dec. 1998. https://doi.org/10.1016/S0166-218X(98)00081-X
  3. Y. Li, S. Xu, and H. Yang, "Design of signal constellations in the presence of phase noise," in Proceedings IEEE Vehicular Technology Conference, Calgary, Canada, pp. 970-974, Sep. 2008.
  4. R. Krishnan, A. Graell i Amat, T. Eriksson, and G.Colavolpe, "Constellation optimization in the presence of strong phase noise," IEEE Transactions on Communications, vol. 61, no. 12, pp. 5056-5066, Dec. 2013. https://doi.org/10.1109/TCOMM.2013.102313.130131
  5. X. Hong, X. Hong, J. Zhang, and S. He, "Low-complexity linewidth-tolerant time domain sub-symbol optical phase noise suppression in CO-OFDM systems," Optics Express, vol. 24, no. 5, pp. 4856-4871, Feb. 2016. https://doi.org/10.1364/OE.24.004856
  6. Y. Li, K. Morgan, W. Li, K. Miller, R. Watkins, and E. G. Johnson, "Multi-dimensional QAM equivalent constellation using coherently coupled orbital angular momentum (OAM) modes in optical communication," Optics Express, vol. 26, no. 23, pp. 30969-30977, Nov. 2018. https://doi.org/10.1364/OE.26.030969
  7. P. Larsson, "Golden angle modulation," IEEE Transactions on Wireless Communications, vol. 7, no. 1, pp. 98-101, Feb. 2018. https://doi.org/10.1109/LWC.2017.2756630
  8. B. Kwak, N. Song, B. Park, and D. Kwon, "Spiral QAM: A novel modulation scheme robust in the presence of phase noise," in Proceedings IEEE Vehicular Technology Conference, Calgary, Canada, pp. 1014-1018, Sep. 2008.
  9. H. Chu, "Is spiral modulation really useful?," M.S. thesis, The University of British Columbia, Vancouver, Canada, 2016.
  10. S. G. Kang, A Method of Designing Spiral QAM, Korean Patent 10-2081648, Republic of Korea, 2020.