DOI QR코드

DOI QR Code

Design and Performance Analysis of 5G Mobile Communication Array Antenna in Millimeter-Wave (mm-Wave) Band

밀리미터파(mm-Wave) 대역 5G 이동통신 Array 안테나의 설계와 성능분석 연구

  • Lee, Sung-hun (Convergence Technology Research Division, Gumi Electronics & Information Technology Research Institute) ;
  • Lee, Chang-Kyo (Convergence Technology Research Division, Gumi Electronics & Information Technology Research Institute) ;
  • Park, Jae-Hong (Convergence Technology Research Division, Gumi Electronics & Information Technology Research Institute) ;
  • Cho, Soo-Hyun (Convergence Technology Research Division, Gumi Electronics & Information Technology Research Institute) ;
  • Choi, Seung-Ho (Electronics Component R&D Center, LS Mtron Ltd) ;
  • Kim, Tae-Hyung (Electronics Component R&D Center, LS Mtron Ltd)
  • Received : 2020.07.10
  • Accepted : 2020.07.27
  • Published : 2020.09.30

Abstract

In this study, we designed a single antenna taking into account the performance, such as return loss and radiation pattern, of 28 GHz and 38 GHz array antennas for 5G mobile devices. In millimeter wave band communication, high path loss occurs between transmission and reception, unlike in conventional microwave bands. In the design of array antennas for 5G millimeter wave terminals, antenna performance such as antenna gain, bandwidth, isolation between antenna elements, side-lobe level(SLL), etc. should be further considered. The performance of the designed array antennas was analyzed by spacing the antenna elements at half a wavelength. Our results proved the validity of the design and its suitability for applications in mm-Wave by showing that the 28 GHz and 39 GHz array antennas had antenna gains of 13.5 dBi and 11.3 dBi and return losses below -18.4 dB and -20 dB, correspondingly.

본 논문에서는 28 GHz와 38 GHz의5G 단말용 안테나 타입별 반사손실, 방사패턴 등의 성능을 고려하여 단일안테나를 설계하고, 안테나 소자를 반 파장 간격으로 배열하여 5G 단말용 배열안테나를 설계하였고 성능을 분석하였다. 밀리미터파 대역 통신에서는 기존의 마이크로파 대역에서와는 달리 송수신 간의 높은 경로손실이 발생한다. 5G 밀리미터파 단말용 배열안테나 설계에서는 안테나의 이득, 대역폭뿐만 아니라, 안테나 소자 간 격리도, side-lobe level(SLL) 등의 안테나 성능이 추가적으로 고려되어야 한다. 28GHz와 39GHz에서 제안하는 안테나 이득이 각각 약 13.5dBi 와 11.3dBi, 반사손실도 -18.4 dB과 -20 dB 이하의 측정 결과로부터 설계의 타당함을 입증하였고, 밀리미터파 대역 응용으로서도 적합함을 보였다.

Keywords

References

  1. H. Xia, T. Zhang, L. Li, and F. Zheng, "A low-cost dual-polarized 28 GHz phased array antenna for 5G communications," in 2018 International Workshop on Antenna Technology(iWAT), Nanjing, pp. 1-4, Jun. 2018.
  2. N. Ojaroudiparchin, M. Shen, and G. F. Pedersen, "Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals," in 2015 23rd Telecommunications Forum Telfor(TELFOR), Belgrade, pp. 587-590, Nov. 2015.
  3. M. Bansal, L. Shricastava, "Performance Analysis of Wireless Mobile Adhoc Network with Different Types of Antennas," Asia-pacific Journal of Convergent Research Interchange, vol.3, no.1, pp. 29-39, Mar. 2017. https://doi.org/10.21742/apjcri.2017.03.03
  4. K. Araki, A. Tanaka and E. Matsumura, "Wide scanning phased array antenna design in Ka band," IEE Proc.-Microw. Antennas Propagation, vol. 150, no. 5, pp. 379-384, Oct. 2003. https://doi.org/10.1049/ip-map:20030614
  5. Y. H. Peng and L. H. Lu, "A Ku-band frequency synthesizer in 0.18-um CMOS technology," IEEE Microwave and Wireless Components Letters, vol. 17, no. 4, pp. 256-258, Apr. 2007. https://doi.org/10.1109/LMWC.2007.892953
  6. Z. Qiu and P. Zong, "Three-dimensional phased array antenna analysis and simulation," in 2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, pp.538-542, Oct. 2009.
  7. T. C. Cheston and J. Frank, Phased Array Radar Antennas, in Radar Handbook, New York, NY: McGraw-Hill, 1990.
  8. S. Jeong and T. W. Kim, "Design and Analysis of Swapped Port Coupler and Its Application in a Miniaturized Butler Matrix," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 4, pp. 764-770, Apr. 2010. https://doi.org/10.1109/TMTT.2010.2041571
  9. W. Rotman and R. F. Turner "Wide-angle microwave lens for line source applications," IEEE Trans. Antennas Propag., vol. 11, no. 6, pp. 623-632, Nov. 1963. https://doi.org/10.1109/TAP.1963.1138114
  10. C. H. Tseng, C. J. Chen and T. H. Chu, "A Low-Cost 60-GHz Switched-Beam Patch Antenna Array With Butler Matrix Network," in IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 432-435, Jul. 2008. https://doi.org/10.1109/LAWP.2008.2001849
  11. K. Zhao, J. Helander, D. Sjoberg, S. He, T. Bolin, and Z. Ying, "User body effect on phased array in user equipment for the 5G mm-Wave communication system," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 864-867, Sep. 2016. https://doi.org/10.1109/LAWP.2016.2611674
  12. Y. J. Kim, J. Maharjan, D. Y. Choi, "Rectangular Miccrostrip Patch Antenna with Semicircular Structure for 5G Applications," Journal of the Korea Institute of Information and Communication Engineering, vol. 23, no. 10, pp. 1269-1274, Oct. 2019.
  13. T. Manabe, Y. Miura, and T. Ihara, "Effects of antenna directivity and polarization on indoor multipath propagation characteristics at 60 GHz," IEEE Journal on Selected Areas in Communications, vol. 14, no. 3, pp. 441-448, Apr. 1996. https://doi.org/10.1109/49.490229
  14. I. Syrytsin, S. Zhang, G. F. Pedersen, and Z. Ying, "User effects on the circular polarization of 5G mobile terminal antennas," IEEE Transactions on Antennas and Propagation, vol. 66. no. 9, pp. 4906-4911, Sep. 2018. https://doi.org/10.1109/TAP.2018.2851383
  15. N. O. Parchin, M. Shen, and G. F. Pedersen, "UWB Mm-Wave antenna array with quasi omnidirectional beams for 5G handheld devices," in 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, pp. 1-4, 2016.
  16. M. Stanley, Y. Huang, H. Wang, H. Zhou, A. Alieldin, and S. Joseph, "A capacitive coupled patch antenna array with high gain and wide coverage for 5G smartphone applications," IEEE Access, vol. 6, pp. 41942-41954, Aug. 2018. https://doi.org/10.1109/access.2018.2860795