DOI QR코드

DOI QR Code

Design of FPGA-based Signal Processing of EWRG for Localized Heavy Rainfall Observation

국지성 호우 관측을 위한 FPGA 기반의 전파강수계 신호처리 설계

  • Choi, Jeong-Ho (Department of Automatic System, Chosun College of Science & Technology) ;
  • Lee, Bae-Kyu (Department of Automatic System, Chosun College of Science & Technology) ;
  • Park, Hyeong-Sam (Department of Computer Engineering, Chonnam National University) ;
  • Park, Jeong-Min (Department of Automatic System, Chosun College of Science & Technology) ;
  • Lim, Sang-Hun (Department of Land, Water and Environment Research, Korea Institute of Civil engineering and Building Technology)
  • Received : 2020.08.14
  • Accepted : 2020.08.20
  • Published : 2020.09.30

Abstract

Recently, the number of natural disasters caused by inclement weather conditions such as localized heavy rainfall, Typhoon, etc. is increasing in Korea, which requires relevant prevention and water management measures. Rain gauges installed on the ground have strengths in continuously·directly measures ground precipitation but cannot provide accurate information on spatial precipitation distribution in the areas without the rain gauges. The present research has designed and developed an electromagnetic-based multi-purpose precipitation gauge(EWRG, Electromagnetic Wave Rain Gauge) that can measure rainfall at the real time, by overcoming spatial representativeness. In this paper, we propose an FPGA-based signal processing design method for EWRG. The signal processing of the EWRG was largely designed by calculating the ADC and DDC of the LFM waveform, pulse compression, correlation coefficient and estimating the precipitation parameter. In this study, the LFM waveform and pulse compressed signal were theoretically analyzed.

최근 서울 경기를 비롯한 전국에서 국지성 집중호우, 태풍 등 악천후 관련 자연재해가 증가함에 따라 이에 대한 방재 및 물관리 대책이 필요한 실정이다. 이러한 수재해를 관측하기 위해 사용되는 우량계는 지상의 강우를 연속적·직접적으로 측정할 수 있는 장점이 있는 반면, 우량계 미설치 영역에 대한 공간적인 강우 분포를 정확하게 제공할 수 없다. 이러한 문제를 해결하고자 강수의 공간분포를 측정할 수 있는 전자파 기반 센서인 전파강수계(EWRG, Electromagnetic Wave Rain Gauge)를 개발하였다. 본 논문에서는 전파강수계의 FPGA 기반 신호처리 설계 방법을 제안한다. 전파강수계의 신호처리는 크게 LFM 파형의 ADC 및 DDC와 펄스압축, 상관 계수 및 강수 파라미터 산정으로 설계하였다. 본 연구를 통해 LFM 파형과 펄스압축 신호를 이론적으로 분석하였으며, 전파강수계 신호처리 설계를 위해서 FPGA 기반의 신호처리 설계 및 검증을 수행하였다.

Keywords

References

  1. KICT(Korea Institute of Civil Engineering and Building Technology), "Development of Ultra-small Radar Rain Gauge and Rainfall Analysis Technology," Research Report, Ministry of Land, Infrastructure, and Transport, 2014.
  2. J. Sandsborg, "Local Rainfall Variations Over Small, Flat, Cultivated Areas," Tellus, vol. 21, no. 5, pp. 673-684, 1969. DOI: 10.1111/j.2153-3490.1969.tb00475.x.
  3. T. Soren, "Weather Radar Rainfall Data in Urban Hydrology," Hydrology and Earth System Sciences, vol. 21, pp. 1359-1380, 2017. DOI: 10.5194/hess-21-1359-2017.
  4. B. J. Jang, W. Kim, S. H. Lim and J. H. Choi, "Analysis of Rainfall Cases and Their Observed Signal from Prototype of Electromagnetic Wave Rain Gauge," The Institute of Electronics and Information Engineers Conference, 2018.
  5. J. H. Yoon, S. O. Yoo, D. J. Lee and S. H. Ye, "LFM Radar Implemented in SDR Architecture," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 29, no. 4, pp. 308 - 315, 2018. DOI: 10.5515/KJKIEES.2018.29.4.308.
  6. H. Chen, "High-quality Pulse Compression of Pre-chirped Pulses in Fiber Amplifiers," CLEO: Science and Innovationsm, 2012.
  7. C. H. Ha, B. J. Kwon and M. G. Lee, "Radar Signal Processor Design Using FPGA," Journal of the Korea Institute of Military Science and Technology, vol. 20, no. 4, pp. 482-490, 2017. DOI: 10.9766/KIMST.2017.20.4.482.
  8. J. H. Choi, C. S. Yoo, S. H. Lim, M. S. Han and B. K. Lee, "Quality Control Algorithm of Rainfall Radar Image for Uncertainty of Rainfall," Journal of Korea Multimedia Society, vol. 20, no. 12, pp. 1874-1889, 2017. DOI: 10.9717/kmms.2017.20.12.1874.