DOI QR코드

DOI QR Code

ILOCAT: an Interactive GUI Toolkit to Acquire 3D Positions for Indoor Location Based Services

ILOCAT: 실내 위치 기반 서비스를 위한 3차원 위치 획득 인터랙티브 GUI Toolkit

  • Kim, Seokhwan (Robot Business Division, Hanwha Precision Machinery)
  • Received : 2020.05.27
  • Accepted : 2020.06.13
  • Published : 2020.07.31

Abstract

Indoor location-based services provide a service based on the distance between an object and a person. Recently, indoor location-based services are often implemented using inexpensive depth sensors such as Kinect. The depth sensor provides a function to measure the position of a person, but the position of an object must be acquired manually using a tool. To acquire a 3D position of an object, it requires 3D interaction, which is difficult to a general user. GUI(Graphical User Interface) is relatively easy to a general user but it is hard to gather a 3D position. This study proposes the Interactive LOcation Context Authoring Toolkit(ILOCAT), which enables a general user to easily acquire a 3D position of an object in real space using GUI. This paper describes the interaction design and implementation of ILOCAT.

실내 위치 기반 서비스는 사람과 물체 간의 거리에 기반한 서비스를 제공한다. 이러한 실내 위치 기반 서비스는 최근 키넥트와 같은 저렴한 가격의 깊이 센서를 활용하여 구현하는 경우가 증가하고 있다. 다수의 깊이 센서들은 사람의 위치를 트랙킹하는 기능을 기본으로 제공한다. 하지만 물체의 위치는 직접 수동으로 측정해야 한다. 물체의 3차원 위치를 획득하기 위해서는 3차원 인터랙션이 필요한데 이는 일반 사용자들에게는 어렵다는 단점이 있다. 반면에 일반 사용자가 쉽게 사용할 수 있는 GUI (Graphical User Interface) 의 경우에는 3차원 위치 획득이 제한된다. 본 연구는 이러한 문제를 해결하고자 개발된 ILOCAT (Interactive LOcation Context Authoring Toolkit)을 제안한다. ILOCAT 은 일반 사용자들이 실공간에서 GUI를 활용하여 쉽게 물체의 3차원 위치를 취득할 수 있도록 설계되었다. 본 논문은 ILOCAT 의 디자인 및 구현을 상세히 설명한다.

Keywords

References

  1. M. Kim, D. Kim, J. Hwang and B. Chang, "Implementation of Location-Based Smart Campus and Class Guide System Using Beacon," Journal of Korea Contents Association, vol. 18. no. 2, pp. 419-426, 2018. https://doi.org/10.5392/JKCA.2018.18.02.419
  2. M. Vochin, A. Vulpe, G. Scuicu and L. Boicescu, "Intelligent Displaying and Alerting System Based on an Integrated Communications Infrastructure and Low-Power Technology," World Conference on Information Systems and Technologies, pp. 135-141, 2017.
  3. J. Lundell, J. Kimel, T. Dishongh, T. Hayes, M. Pavel and J. Kaye, "Why Elders Forget to Take Their Meds: A Probe Study to Inform a Smart Reminding System," Assistive Technology Research Series. vol. 19, pp. 98-105, 2006.
  4. J. Paek, J. Ko and H. Shin, "A Measurement Study of BLE iBeacon andGeometric Adjustment Scheme for Indoor Location-BasedMobile Applications," Hindawi Mobile Information Systems, vol. 2016, Article ID 8367638, 2016.
  5. S. Kim, S. Takahashi and J. Tanaka. "A location-sensitive visual interface on the palm: interacting with common objects in an augmented space," Personal and Ubiquitous Computing, vol. 19, no. 1, pp. 175-187, 2015. https://doi.org/10.1007/s00779-014-0769-0
  6. S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura and E. Jansen, "The Gator Tech Smart House: a programmable pervasive space," IEEE Computer, vol. 38, no. 3, pp. 50-60, 2005. https://doi.org/10.1109/MC.2005.107
  7. K. Pietroszek, L. Tahai, J. R. Wallace and E. Lank, "Watchcasting: Freehand 3D interaction with off-the-shelf smartwatch," IEEE Symposium on 3D User Interfaces (3DUI), pp. 172-175, 2017.
  8. A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser and M. NieBner, "ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes," IEEE Conference on Computer Vision and Pattern Recognition, pp. 2432-2443, 2017.
  9. Gualtieri, M., Kuczynski, J., Shultz, A. M., Ten Pas, A., Platt R. and Yanco, H. Open world assistive grasping using laser selection, The International Conference on Robotics and Automation, pp. 4052-4057. 2017.
  10. E. S. Goh, M. S. Sunar and A. W. Ismail, "3D Object Manipulation Techniques in Handheld Mobile Augmented Reality Interface: A Review," IEEE Access, vol. 7, pp. 40581-40601, 2019. https://doi.org/10.1109/access.2019.2906394
  11. Seifried, T., Haller, M., Scott, S. D., Perteneder, F., Rendl, C., Sakamoto, D. and Inami, M, "CRISTAL: a collaborative home media and device controller based on a multi-touch display," The ACM Interactive Tabletops and Surfaces, pp. 33-40. 2009.
  12. Kim, S., Takahashi, S. and Tanaka, J. "Point-Tap, Tap-Tap, and The Effect of Familiarity: to Enhance the Usability of See-and-Select in Smart Space." Transaction of Human Interface Society. vol. 14, no. 4, pp. 445-455, 2012.
  13. M. Lochtefeld, F. Wiehr and S. Gehring. "Analysing the effect of tangibile user interfaces on spatial memory," Symposium on Spatial User Interaction, pp. 78-81, 2017.