DOI QR코드

DOI QR Code

On-Line Social Network Generation Model

온라인 소셜 네트워크 생성 모델

  • Lee, Kang-Won (Department of Industrial Engineering, Seoul National University of Science and Technology)
  • Received : 2020.04.20
  • Accepted : 2020.05.16
  • Published : 2020.07.31

Abstract

In this study we developed artificial network generation model, which can generate on-line social network. The suggested model can represent not only scale-free and small-world properties, but also can produce networks with various values of topological characteristics through controlling two input parameters. For this purpose, two parameter K and P are introduced, K for controlling the strength of preferential attachment and P for controlling clustering coefficient. It is found out on-line social network can be generated with the combinations of K(0~10) and P(0.3~0.5) or K=0 and P=0.9. Under these combinations of P and K small-world and scale-free properties are well represented. Node degree distribution follows power-law. Clustering coefficients are between 0.130 and 0.238, and average shortest path distance between 5.641 and 5.985. It is also found that on-line social network properties are maintained as network node size increases from 5,000 to 10,000.

본 연구에서는 소셜 네트워크를 생성 할 수 있는 인공적인 네트워크 발생 모델을 제안 하였다. 본 연구에서 제안한 발생 모델은 온라인 소셜 네트워크의 특징인 Small-World 성질과 Scale-Free 성질을 단순하게 표현하는 것에서 벗어나 모델의 두 파라메터를 적절히 조절함으로서 사용자가 원하는 다양한 위상 특성치 값들을 나타내 줄 수 있도록 하였다. 이를 위해 Preferential Attachment의 세기를 조정 할 수 있도록 파라메터 K와 군집화 계수를 적절하게 조정 할 수 있도록 파라메터 P를 도입하였다. K가 0에서 10 그리고 P가 0.3에서 0.5 사이의 조합이나 K = 0과 P = 0.9를 이용하면 소셜 네트워크의 위상적 성질을 보유하는 인공적인 네트워크를 생성할 수 있다. 이 조합 하에서는 Small-World 성질과 Scale-Free 성질이 잘 나타난다. 노드차수 분포는 Power-Law를 따른다. 또한 군집화 계수 0.130 ~ 0.238, 평균 최단거리 5.641 ~ 5.985로 나타났다. 또한 네트워크의 크기를 노드 5,000개에서 10,000개로 증가시켜도 소셜 네트워크 성질을 그대로 유지하는 것으로 나타났다.

Keywords

References

  1. B. Jang and J. Yoon, "Characteristics analysis of data from news and social network services," IEEE Access, vol.6, pp.18061-18073, 2018. https://doi.org/10.1109/access.2018.2818792
  2. V. Amati, A. Lomi, and A.Mira, "Social Network Model," Annual Review of Statistics and its Application, pp.1-29, Mar. 2018.
  3. S. Tabassum, F. S. F. Pereira, S. Fernandes, and J. Gama, "Social Network Analysis: An Overview," Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 58, pp.1- 30, Apr. 2018.
  4. A. V. Proskurnikov and R. Tempo, "A Tutorial on Modeling and Analysis of Dynamic Social Networks. Part 1," Annual Reviews in Control, pp.1-21, May 2017.
  5. K. W. Lee and J. S. Lee, "Power-Law of Node Degree and Information Diffusion Process," The Journal of Korean Institute of Communication and Information Sciences, vol. 44, no. 10, pp.1866-1877, 2019. https://doi.org/10.7840/kics.2019.44.10.1866
  6. J. Kim and M. Hastak, "Social network analysis: Characteristics of online social networks after a disaster," Information Journal of Information Magement, vol.38, pp.86-96, 2018.
  7. A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee, "Measurement and analysis of online social networks," Internet Measurement Conference, 2007.
  8. Y. Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong, "Analysis of topological characteristics of huge online social networking services," , Semantic Web and Web 2.0, 2007.
  9. D. Sun, J. Wu, S. Zheng, B. Hu, and K. M. Carley, "Topological Analysis and measurements of an online chinese student social network," Complex, Part 1, pp.737-748, 2009.
  10. A. Rezvanian and M. R. Meybody, "Stochastic graph as a model for social networks," Computers in Human Behavior, vol.64, pp.621-640, 2016. https://doi.org/10.1016/j.chb.2016.07.032
  11. Q. D. Truong, Q. B. Truong, and T. Tkaki, "Graph method for social network analysis," International Conference on Nature of computation and Communication, pp.276-286, October 2016.
  12. Z. Bu, Z. Xia, J. Wang, and C. Zhang, "A last updating evolution model for online social networks," Physica A, 392, pp.2240-2247, 2013. https://doi.org/10.1016/j.physa.2013.01.006
  13. P. Erdos and A, Renyi, "On the evolution of random graph," Public Mathmatical Institute Hungary Academic Science, vol.5, pp.17-60, 1959.
  14. D. J. Watts and S.H. Strogatz, "Collective dynamics of small-world," Nature, 393, pp.440-442,1998. https://doi.org/10.1038/30918
  15. A. Barabasi and R. Albert, "Emergence of Scaling in Random Networks," Science 286, pp.509-512, 1999. https://doi.org/10.1126/science.286.5439.509
  16. R. D. Caux, C. Smith, D. Kniveton, R. Black, and A. Philippides, "Dynamic, small-world, social network generation through local agent interactions," Complexity, vol. 19, no. 6, pp. 44-53, 2014. https://doi.org/10.1002/cplx.21528
  17. K. W. Lee, H. K. Uhm and H. J. Choe, "Tunable network generation model for small-world and scale-free network," The Journal of Korean Institute of Communication and Information Sciences, vol.42, no.07, pp.1392-1401, 2017. https://doi.org/10.7840/kics.2017.42.7.1392
  18. M. Q. Pasta and Z. Jan. (2014, October). Tunable and growing network generation model with community structures. [Online] arXiv:1310.8396v2[csS1].
  19. K. W. Lee, S. W. Moon, B. H. Kim and S. Y. Jun, "Generation method of Korea Internet AS network using BA model," The Journal of Korean Institute of Communication and Information Sciences, vol.43, no.06, pp.986-994, 2018. https://doi.org/10.7840/kics.2018.43.6.986
  20. S. Milgram, "The small world problem," Psychology Today, vol.2, pp.60-67, 1967.