DOI QR코드

DOI QR Code

Parameter Extraction for Based on AR and Arrhythmia Classification through Deep Learning

AR 기반의 특징점 추출과 딥러닝을 통한 부정맥 분류

  • Cho, Ik-sung (School of Interdisciplinary Studies, Daegu University) ;
  • Kwon, Hyeog-soong (Department of IT Engineering, Pusan National University)
  • Received : 2020.06.30
  • Accepted : 2020.07.19
  • Published : 2020.10.31

Abstract

Legacy studies for classifying arrhythmia have been studied in order to improve the accuracy of classification, Neural Network, Fuzzy, Machine Learning, etc. In particular, deep learning is most frequently used for arrhythmia classification using error backpropagation algorithm by solving the limit of hidden layer number, which is a problem of neural network. In order to apply a deep learning model to an ECG signal, it is necessary to select an optimal model and parameters. In this paper, we propose parameter extraction based on AR and arrhythmia classification through a deep learning. For this purpose, the R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval is modelled. And then, the weights were learned by supervised learning method through deep learning and the model was evaluated by the verification data. The classification rate of PVC is evaluated through MIT-BIH arrhythmia database. The achieved scores indicate arrhythmia classification rate of over 97%.

부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경회로망(Artificial Neural Network), 기계학습(Machine Learning) 등을 이용한 방법이 연구되어 왔다. 특히 딥러닝은 신경회로망의 문제인 은닉층 개수의 한계를 해결함으로 인해 인공 지능 기반의 부정맥 분류에 많이 사용되고 있다. 본 연구에서는 AR 기반의 특징점 추출과 딥러닝을 통한 부정맥 분류 방법을 제안한다. 이를 위해 먼저 잡음을 제거한 ECG 신호에서 R파를 검출하고 자기 회귀 모델을 통하여 최적의 QRS와 RR간격을 추출하였다. 이후 딥러닝을 통한 지도학습 방법으로 가중치를 학습시키고 부정맥을 분류하였다. 제안된 방법의 타당성 평가를 위해 MIT-BIH 부정맥 데이터베이스를 통해 각 파라미터에 따른 훈련 및 분류 정확도를 확인하였다. 성능 평가 결과 PVC는 약 97% 이상의 평균 분류율을 나타내었다.

Keywords

References

  1. S.-H. Liou, Y.-H. Wu, Y.-S. Syu, Y.-L. Gong, H.-C. Chen, and S.-T. Pan, "Real-time remote ECG signal monitor and emergency warning/positioning system on cellular phone," Intelligent Information and Database Systems, Berlin, Germany: Springer-Verlag, vol. 7198, pp. 336-345, 2012. https://doi.org/10.1007/978-3-642-28493-9_36
  2. C. Ye, B. V. K. Kumar, and M. T Coimbra, "Heartbeat classification using morphological and dynamic features of ECG signals," IEEE Transactions on Biomedical Engineering, vol. 59, no. 10, pp. 2930-2941, Oct. 2012. https://doi.org/10.1109/TBME.2012.2213253
  3. M. J. Rooijakkers, C. Rabotti, H. D. Lau, S. G. Oei, J. W. M. Bergmans, and M. Mischi, "Feasibility Study of a New Method for Low-Complexity Fetal Movement Detection From Abdominal ECG Recordings," IEEE Journal of Biomedical and Health Informatics, vol. 20, no. 5, pp. 1361-1368, Sep. 2016. https://doi.org/10.1109/JBHI.2015.2452266
  4. K. Hanbay, "Deep neural network based approach for ECG classification using hybrid differential features and active learning," Institution of Engineering and Technology, vol. 13, no. 2, pp. 165 - 175, May. 2019.
  5. W. Li, "Deep Intermediate Representation and In-Set Voting Scheme for Multiple-Beat Electrocardiogram Classification," IEEE Sensors Journal, vol. 19, no. 16, pp. 6895 - 6904, Apr. 2019. https://doi.org/10.1109/JSEN.2019.2910853
  6. P. Li, Y. Wang, J. He, L. Wang, Y. Tian, T. Zhou, T. Li, and J. S. Li, "High-Performance Personalized Heartbeat Classification Model for Long-Term ECG Signal," IEEE Transactions on Biomedical Engineering, vol. 64, no. 1, pp. 78-86, Jan. 2017. https://doi.org/10.1109/TBME.2016.2539421
  7. I. S. Cho and H. S. Kwon, "Optimal Threshold Setting Method for R Wave Detection According to The Sampling Frequency of ECG Signals," Journal of Korea Institute of Information and Communication Engineering, vol. 21, no. 7, pp. 1420-1428, Jul. 2017. https://doi.org/10.6109/jkiice.2017.21.7.1420
  8. W. Li and J. Li, "Local Deep Field for Electrocardiogram Beat Classification," IEEE Sensors Journal, vol. 18, no. 4, pp. 1656 - 1664, Nov. 2019. https://doi.org/10.1109/jsen.2017.2772031
  9. G. Wang, J. Hu, C. Li, B. Guo, and F. Li, "Simultaneous Human Health Monitoring and Time-Frequency Sparse Representation Using EEG and ECG Signals," IEEE Access, vol. 7, pp. 85985 - 85994, Jun. 2019. https://doi.org/10.1109/access.2019.2921568
  10. Q. Li, C. Rajagopalan, and G. D. Clifford, "Ventricular Fibrillation and Tachycardia Classification Using a Machine Learning Approach," IEEE Transactions on Biomedical Engineering, vol. 61, no. 6, pp. 1607-1613, Jul. 2013. https://doi.org/10.1109/TBME.2013.2275000