DOI QR코드

DOI QR Code

128duino : An Extension of the Arduino Platform for ATmega128

128duino : ATmega128을 위한 아두이노 플랫폼의 확장

  • Choi, Hun (Department of Electronic Engineering, Dong-Eui University) ;
  • Heo, Gyeongyong (Department of Electronic Engineering, Dong-Eui University)
  • Received : 2020.07.22
  • Accepted : 2020.08.03
  • Published : 2020.10.31

Abstract

Arduino is a microcontroller platform for non-IT major students, and is widely used as a learning tool. Several AVR series microcontrollers are used in Arduino boards, but ATmega128 is not used. ATmega128 is widely used because of its high expandability and competitive price compared to ATmega328 and ATmega2560 used in Arduino boards. Therefore, by allowing ATmega128 to be used in an Arduino environment, the usability of existing hardware and the Arduino platform can be improved. In this paper, proposed are an Arduino-compatible board design based on ATmega128 and ways to use the ATmega128-based board. As the strengthes of the Arduino platform can be used while utilizing existing hardware in the proposed extension, it is expected that the proposed one can be used in various microcontroller-related education and enhance the learning efficiency.

아두이노는 비전공자를 위한 마이크로컨트롤러 플랫폼의 하나로 학습용으로 널리 사용되고 있다. 아두이노 보드에는 여러 종류의 AVR 시리즈 마이크로컨트롤러가 사용되지만, ATmega128은 사용하지 않는다. ATmega128은 아두이노 보드에 사용되는 ATmega328이나 ATmega2560과 비교했을 때 확장성이 우수하고 가격 경쟁력이 높아 지금도 많이 사용되고 있으므로, ATmega128을 아두이노 환경에서 사용할 수 있도록 함으로써 기존 하드웨어의 활용성을 높일 수 있음은 물론 아두이노 플랫폼 역시 활용할 수 있는 장점이 있다. 이 논문에서는 ATmega128과 아두이노 플랫폼의 장점을 결합할 수 있도록 ATmega128을 기반으로 하는 아두이노 호환 보드 설계와 이를 활용하는 방법을 제시한다. 이러한 아두이노 플랫폼의 확장은 기존 하드웨어를 활용하면서 아두이노 플랫폼의 장점을 사용할 수 있어 다양한 마이크로컨트롤러 관련 교육에서 학습 효과를 높일 수 있을 것으로 기대된다.

Keywords

References

  1. Arduino [Internet]. Available: https://www.arduino.cc/.
  2. P. Plaza, E. Sancristobal, G. Fernandez, M. Castro, and C. Perez, "Collaborative robotic educational tool based on programmable logic and Arduino," in Proceedings of 2016 Technologies Applied to Electronics Teaching, Seville, Spain, pp. 1-8, 2016.
  3. M. Novak, J. Kalova, and J. Pech, "Use of the Arduino Platform in Teaching Programming," in Proceedings of 2018 IV International Conference on Information Technologies in Engineering Education, Moscow, Russia, pp. 1-4, 2018.
  4. J. C. Martinez-Santos, O. Acevedo-Patino, and S. H. Conteras-Ortiz, "Influence of Arduino on the Development of Advanced Microcontrollers Courses," IEEE Revista Iberoamericana de Technologias del Aprendizaje, vol. 12, no. 4, pp. 208-217, Nov. 2017. https://doi.org/10.1109/RITA.2017.2776444
  5. A. Bashir, M. Alhammadi, M. Moath Awawdeh, and T. Faisal, "Effectiveness of using Arduino platform for the hybrid engineering education learning model," in Proceedings of 2019 Advances in Science and Engineering Technology International Conferences, Dubai, United Arab Emirates, pp. 1-6, 2019.
  6. G. Y. Heo and J. W. Jung, "Arduino Compatible Modular Kit Design for Educational Purpose," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 10, pp. 1371-1378, Jan. 2018. https://doi.org/10.6109/JKIICE.2018.22.10.1371
  7. G. Y. Heo, "Implementation of an Arduino Compatible Modular Kit for Educational Purpose," Journal of the Korea Institute of Information and Communication Engineering, vol. 23, no. 5, pp. 547-554, May. 2019. https://doi.org/10.6109/JKIICE.2019.23.5.547
  8. MegaCore [Internet]. Available: https://github.com/MCUdude/MegaCore/.
  9. A. Malizia, T. Turchi, and K. A. Olsen, "Block-oriented programming with tangibles: An engaging way to learn computational thinking skills," in Proceedings of 2017 IEEE Blocks and Beyond Workshop, Raleigh, NC, USA, 2017.
  10. H. Y. Eom and K. H. Lee, "Design of Embodiment-based Programming Education using Arduino for Middle School Students," The Journal of the Convergence on Culture Technology, vol. 6, no. 1, pp. 471-476, Jan. 2020. https://doi.org/10.17703/JCCT.2020.6.1.471