DOI QR코드

DOI QR Code

Handover Delay Stability Method for Train Control on LTE Railway System

LTE-R 시스템에서 열차제어를 위한 핸드오버 지연 안정화 방안

  • Oh, Sang-Chul (Future Mobile Communication Research Laboratory, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Yoon, Byung-Sik (Future Mobile Communication Research Laboratory, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Lee, Sook-Jin (Future Mobile Communication Research Laboratory, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Choi, Min-Suk (Future Mobile Communication Research Laboratory, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Kim, Dong-Joon (Technology Research Division, Korea National Railway (KNR)) ;
  • Sung, Dong-il (Technology Research Division, Korea National Railway (KNR))
  • Received : 2020.10.03
  • Accepted : 2020.10.28
  • Published : 2020.12.31

Abstract

In case that the train driving with diverse high-speeds is manipulates by real-time remote control in long-term evolution-railway (LTE-R) system with frequent handovers, the real-time safe transmission of train control messages is important element. The handover delay time stability method regardless of train speed in order to enhance the real-time remote train control stability in LTE-R system is proposed in the paper. Furthermore, the variable speeds and altitudes of train collected by real measurements are applied for upgrading simulation accuracy. The simulation results inform that not only there are stable and unstable ranges to A3 offset values, but the optimal offset value for average handover delay is in unstable range. However, the late handover with A3 offset values in stable range should be chosen to get the predictable handover delay regardless of train speed rather than the early handover with A3 offset values in unstable range, since the key value of high-speed Korea railway system is the stability.

잦은 핸드오버가 발생하는 LTE-R 시스템에서 다양한 속도로 고속 주행하는 열차를 실시간으로 원격제어하는 경우 열차제어 메시지의 안정된 실시간 송수신은 열차운행에 중요한 요소이다. 본 논문에서는 이러한 LTE-R 환경에서 실시간 원격 열차제어의 안정성을 높이기 위해 열차 속도에 무관한 핸드오버 지연시간 안정화 방안을 제시하였다. 또한, 시뮬레이션의 정확도를 높이기 위해 실제 구간별 가변속도, 고도 등을 반영한 실측 데이터를 시뮬레이션에 반영하였다. 시뮬레이션 결과에 따라, A3 오프셋 값에 따라 평균 핸드오버 지연시간이 불안정한 영역과 안정한 영역이 존재한다는 것을 알았으며, 최적값은 불안정한 영역에 존재한다는 것 또한 알 수 있었다. 그러나, 열차 속도에 관련 없이 예측 가능한 핸드오버 지연시간을 얻기 위해서는 불안정한 영역에 있는 A3 오프셋 값을 통한 Early 핸드오버 보다는, 지연이 조금 더 있더라도 안정적 영역에 있는 A3 오프셋 값을 이용한 Late 핸드오버가 안정성을 최우선시 하는 국내 LTE-R 망에 더 적합하다는 것을 알 수 있었다.

Keywords

References

  1. TTA TR 06.0205, Configuration of base station for lte-r system of railway communications, Telecommunications Technology Association (TTA), 2019.
  2. R. He, B. Ai, G. Wang, K. Guan, Z. Zhong, A. F. Molisch, C. Briso Rodriguez, and C. P. Oestges, "High-speed railway communications: From GSM-R to LTE-R," IEEE Vehicular Technology Magazine, vol. 11, no. 3, pp. 49-58, 2016. https://doi.org/10.1109/MVT.2016.2564446
  3. S. Barbera, K. I. Pedersen, C. Rosa, P. H. Michaelsen, F. Frederiksen, E. Shah, and A. Baumgartner, "Synchronized RACHless Handover Solution for LTE Heterogeneous Networks," in Proceeding of the International Symposium on Wireless Communication Systems (ISWCS), IEEE, Aug. 2015.
  4. J. H. Choi and D. J. Shin, "Generalized RACH-Less Handover for Seamless Mobility in 5G and Beyond Mobile Networks," IEEE Wireless Communications Letters, vol. 8, no. 4, pp. 1264-1267. 2019. https://doi.org/10.1109/LWC.2019.2914435
  5. A. A. M. K. Abuelgasim and K. M. Yusof, "High Speed Mobility Management Performance in a Real LTE Scenario," Engineering, Technology & Applied Science Research, vol. 10, no. 1, pp. 5175-5179. 2020. https://doi.org/10.48084/etasr.3245
  6. F. H. Khan and M. Portmann, "Joint QoS-control and handover optimization in backhaul aware SDN-based LTE networks," Wireless Networks, vol. 26, no. 4, pp. 2707-2729. 2020. https://doi.org/10.1007/s11276-019-02021-7
  7. I. Shayea, M. Ismail, R. Nordin, M. Ergen, N. Ahmad, N. F. Abdullah, A. Alhammadi and H. Mohamad, "New weight function for adapting handover margin level over contiguous carrier aggregation deployment scenarios in LTE-advanced system," Wireless Personal Communications, vol. 108, no. 2, pp. 1179-1199. 2019. https://doi.org/10.1007/s11277-019-06463-2
  8. W. Kim and D. Kim, "High-Throughput Primary Cell Frequency Switching for Multi-RAT Carrier Aggregation," IEICE Transactions on Information and Systems, vol. 102, no. 6, pp. 1210-1214. 2019.
  9. E. A. Ibrahim, E. F. Badran, and M. R. M. Rizk, "A Power-distance based Handover Triggering Algorithm for LTE-R using WINNERIID2a Channel Model," in Proceeding of the Asia-Pacific Conference on Communications (APCC), IEEE, Aug. 2016.
  10. H. J. Cho, S. J. Shin, G. E. Lim, C. S. Lee, and J. M. Chung, "LTE-R Handover Point Control Scheme for High-Speed Railways," IEEE Wireless Communications, vol. 24, no. 6, pp. 112-119, Dec. 2017. https://doi.org/10.1109/MWC.2017.1600461
  11. 3GPP Std. TS 36.331, Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC), 3GPP, 2018.
  12. K. Saputra, N. Nazaruddin, D. H. Yunardi, and R. Andriyani, "Implementation of haversine formula on location based mobile application in Syiah Kuala University," in Proceeding of the International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), IEEE, 2019.
  13. H. Alkan, and H. Celebi, "The Implementation of Positioning System with TriLateration of Haversine Distance," in Proceeding of the 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), IEEE, 2019.
  14. A. Sofwan, Y. A. A. Soetrisno, N. P. Ramadhani, A. Rahmayani, E. Handoyo, and M. Arfan, "Vehicle Distance Measurement Tuning using Haversine and Micro-Segmentation," in Proceeding of the International Seminar on Intelligent Technology and Its Applications (ISITIA). IEEE, 2019.