DOI QR코드

DOI QR Code

Low-complexity Sampling Set Selection for Bandlimited Graph Signals

대역폭 제한 그래프신호를 위한 저 복잡도 샘플링 집합 선택 알고리즘

  • Kim, Yoon Hak (Department of Electronic Engineering, Chosun University)
  • Received : 2020.09.28
  • Accepted : 2020.10.19
  • Published : 2020.12.31

Abstract

We study the problem of sampling a subset of nodes of graphs for bandlimited graph signals such that the signal values on the sampled nodes provide the most information in order to reconstruct the original graph signal. Instead of directly minimizing the reconstruction error, we focus on minimizing the upper bound of the reconstruction error to reduce the complexity of the selection process. We further simplify the upper bound by applying useful approximations to propose a low-weight greedy selection process that is iteratively conducted to find a suboptimal sampling set. Through the extensive experiments for various graphs, we inspect the performance of the proposed algorithm by comparing with different sampling set selection methods and show that the proposed technique runs fast while preserving a competitive reconstruction performance, yielding a practical solution to real-time applications.

대역폭 제한 그래프신호의 신호복원을 위해서 최대의 정보를 제공하기 위한 그래프 상의 노드를 선택하는 샘플링 집합 선택 알고리즘에 대해 연구한다. 저 복잡도 선택알고리즘을 구현하기 위해 직접적인 비용함수인 신호 복원오차를 최소화 하는 대신, 신호 복원오차의 최대값을 최소화하는 방법에 대해 집중한다, 이를 위해, 추가적인 복잡도 개선을 위해 유용한 근사화공식을 적용하여 성능손실을 최소화하면서 복잡도를 개선한 저 복잡도 탐욕알고리즘을 제안한다. 다양한 그래프신호에 대한 폭넓은 실험을 통해, 기존 저 복잡도 방식과 신호복원성능 및 복잡도를 평가 비교하여 기존방식대비 신호복원 및 복잡도면에서 모두 성능 개선이 있음을 보였으며, 이는 실시간 응용분야에서 실용적인 해결방식으로써 경쟁력 있는 대안을 제시한다.

Keywords

References

  1. D. Shuman, S. Narang, P. Frossard, A. Ortega, P. Vandergheynst, "The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains," IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, 2013. https://doi.org/10.1109/MSP.2012.2235192
  2. A. Ortega, P. Frossard, J. Kovaevic, J. M. F. Moura, P. Vandergheynst, "Graph signal processing: overview, challenges and applications," Proceedings of the IEEE, vol. 106, no. 5, pp. 808-828, 2018. https://doi.org/10.1109/JPROC.2018.2820126
  3. A. Anis, A. Gadde, A. Ortega, "Towards a sampling theorem for signals on arbitrary graphs," IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP), Florence, Italy, pp. 3864-3858, 2014.
  4. A. Anis, A. Gadde, A. Ortega, "Efficient sampling set selection for bandlimited graph signals using graph spectral proxies," IEEE Transactions on Signal Processing, vol. 64, no. 14, pp. 3775-3789, 2016. https://doi.org/10.1109/TSP.2016.2546233
  5. S. Chen, R. Varma, A. Sandryhaila, J. Kovaevic, "Discrete signal processing on graphs: sampling theory," IEEE Transactions on Signal Processing, vol. 63, no. 24, pp.6510- 6523, 2015. https://doi.org/10.1109/TSP.2015.2469645
  6. N. Perraudin, B. Ricaud, D. Shuman and P. Vandergheynst, "Global and local uncertainty principles for signals on graphs," APSIPA Transactions. On Signal and Information Processing, vol. 7, Apr. 2018.
  7. A. Sakiyama, Y. Tanaka, T. Tanaka, A. Ortega, "Eigendecompostion-free sampling set selection for graph signals," IEEE Transactions on Signal Processing, vol.67, no. 10, pp. 2679-2692, 2019. https://doi.org/10.1109/TSP.2019.2908129
  8. F. Wang, G. Cheung, Y. Wang, "Low-complexity graph sampling with noise and signal reconstruction via Neumann series," IEEE Transactions. On Signal Processing, vol. 67, no. 21, pp. 5511-5526, 2019. https://doi.org/10.1109/TSP.2019.2940129
  9. N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Vandergheynst, and D. K. Hammond, "GSPBOX: A toolbox for signal processing on graphs," ArXiv e-prints arXiv:1408.5781, Aug. 2014.