DOI QR코드

DOI QR Code

Impact of Solar Irradiance on the Receiver Sensitivity of Free-Space Optical Communication Systems

주광이 무선 광통신 시스템의 수신 감도에 미치는 영향

  • Park, Gihong (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Hoon (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 박기홍 (한국과학기술원 전기및전자공학부) ;
  • 김훈 (한국과학기술원 전기및전자공학부)
  • Received : 2020.10.16
  • Accepted : 2020.11.18
  • Published : 2020.12.25

Abstract

We evaluate the degradation of receiver sensitivity induced by direct and indirect exposure to solar irradiance in free-space optical communication systems. For this purpose, we calculate the variances of numerous noise components arising from solar irradiance, and then estimate the receiver sensitivity penalties for intensity-modulation/direct-detection and coherent systems. The results show that the penalties are less than 1.3 dB when indirect sunlight impinges on the detector, regardless of the system. However, the sensitivity penalties are estimated to be larger than 30 dB when the sunlight is directly incident upon the receiver. These penalties are barely reduced if we insert an optical polarizer, or if we adjust the bandwidth of an optical filter at the receiver to be as narrow as the signal's bandwidth.

실외에서 운용되는 무선 광통신 시스템의 수신기는 태양광에 직·간접적으로 노출되기 마련이다. 본 논문에서는 주광이 무선 광통신 시스템의 수신 감도에 미치는 영향을 정량적으로 분석하였다. 이를 위하여 방사 조도 측정치를 활용하여 지상에 위치한 수신기에 특정 시야각으로 직접 또는 간접적으로 입사하는 단위 면적당 태양광 전력 스펙트럼 밀도를 얻었고, 이 값을 이용하여 세기 변조/직접 검출 및 코히어런트 시스템의 성능 열화를 계산하였다. 분석 결과 주광이 수신기에 간접적으로 인가되는 경우 수신 감도 페널티가 시스템 종류에 관계없이 1.3 dB 이하였으나, 직접적으로 인가되는 경우에는 30 dB 이상의 매우 큰 수신 감도 열화가 발생하였다. 또한 이러한 수신 감도 열화는 편광자 사용 또는 광학 필터 대역폭 조절에 의해서도 거의 경감되지 않았다.

Keywords

References

  1. H. Kaushal and G. Kaddoum, "Optical communication in space: challenges and mitigation techniques," IEEE Commun. Surv. Tutor. 19, 57-96 (2017). https://doi.org/10.1109/COMST.2016.2603518
  2. E. Leitgeb, M. Gebhart, and U. Birnbacher, "Optical networks, last mile access and applications," in Free-Space Laser Communications: Principles and Advances, A. K. Majumdar, J. C. Ricklin, ed. (Springer, NY, USA, 2008), Vol. 2, pp. 273-302.
  3. Facebook Engineering, "Building communications networks in the stratosphere," (Y. Maguire, Published Date: 30 Jul. 2015), https://engineering.fb.com/connectivity/building-communications-networks-in-the-stratosphere/ (Accessed Date: Oct. 2020).
  4. R. Van Hooijdonk, "Google's projects loon and skybender are taking internet connectivity to greater heights," (Richard Van Hooijdonk Blog, Published Date: 10 March 2016), https://www.richardvanhooijdonk.com/blog/en/googles-projects-loon-and-skybender-are-taking-internet-connectivity-to-greater-heights (Accessed Date: Oct. 2020).
  5. Lunar Laser Communications Demonstration, "Lunar laser communication demonstration NASA's first space laser communication system demonstration," (National Aeronautics and Space Administration Lunar Laser Communications Demonstration Goddard Space Flight Center, Published Date: 2013), https://www.nasa.gov/sites/default/files/llcdfactsheet.final_.web_.pdf (Accessed Date: Oct. 2020).
  6. G. H. Park and H. Kim, "Impact of solar radiation on the performance of outdoor free-space optical communication systems," in Proc. Photonics Conference (Phoenix Pyeong-chang Hotel, Korea, Dec. 2019), paper F2C-1.
  7. V. G. Sidorovich "Solar background effects in wireless optical communications," Proc. SPIE 4873, 133-142 (2002).
  8. M. S. Islim, S. Videv, M. Safari, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, and H. Haas, "The impact of solar irradiance on visible light communications," J. Lightwave Technol. 36, 2376-2386 (2018). https://doi.org/10.1109/JLT.2018.2813396
  9. D. Rollins, J. Baars, D. P. Bajorins, C. S. Cornish, K. W. Fischer, and T. Wiltsey, "Background light environment for free-space optical terrestrial communications links," Proc. SPIE 4873, 99-110 (2002).
  10. K.-P. Ho, Phase-Modulated Optical Communication Systems (Springer, Boston, MA, USA, 2005).
  11. Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface, ASTM G173-03, 2020.
  12. E. Desurvire, Erbium‐Doped Fiber Amplifiers: Principles and Applications (Wiley-Interscience, NY, USA, 1994).
  13. G. Keiser, Optical Fiber Communications (Asia adaptation), 5th revised Ed. (Mc Graw Hill Education, UK, 2014).