DOI QR코드

DOI QR Code

Numerical Modeling of Optical Energy Transfer Based on Coherent Beam Combination under Turbulent Atmospheric Conditions

대기 외란 상황에서 결맞음 빔결합을 통한 광학 에너지의 전달 방법 수치 모델링

  • Na, Jeongkyun (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Kim, Byungho (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Cha, Hyesun (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Jeong, Yoonchan (Department of Electrical and Computer Engineering, Seoul National University)
  • 나정균 (서울대학교 전기정보공학부) ;
  • 김병호 (서울대학교 전기정보공학부) ;
  • 차혜선 (서울대학교 전기정보공학부) ;
  • 정윤찬 (서울대학교 전기정보공학부)
  • Received : 2020.11.10
  • Accepted : 2020.11.20
  • Published : 2020.12.25

Abstract

In this paper, the effect of atmospheric turbulence is numerically modeled and analyzed via a phase-screen model, in regard to long-range optical energy transfer using coherent beam combination. The coherent-beam-combination system consists of three channel beams pointing at a target at a distance of 1-2 km. The phase and propagation direction of each channel beam are assumed to be corrected in an appropriate manner, and the atmospheric turbulence that occurs while the beam propagates through free space is quantified with a phase-screen model. The phase screen is statistically generated and constructed within the range of fluctuations of the structure constant Cn2 from 10-15 to 10-13 [m-2/3]. Particularly, in this discussion the shape, distortion, and combining efficiency of the 3-channel combined beam are calculated at the target plane by varying the structure constant used in the phase-screen model, and the effect of atmospheric turbulence on beam-combination efficiency is analyzed. Analysis with this numerical model verifies that when coherent beam combination is used for long-range optical energy transfer, the received power at the target can be at least three times the power obtainable by incoherent beam combination, even for maximal atmospheric fluctuation within the given range. This numerical model is expected to be effective for analyzing the effects of various types of atmospheric-turbulence conditions and beam-combination methods when simulating long-range optical energy transfer.

본 논문에서는 결맞음 빔결합 방식을 이용한 원거리 광학 에너지 전달 방법에 있어서 대기 외란의 영향을 위상판 모델을 사용하여 수치해석하고 분석한다. 결맞음 빔결합 방식은 3채널로 구성하고, 전송 거리는 1~2 km, 각 채널별 위상 및 조사 방향은 적절한 방식으로 보정된 것으로 가정하며, 각 채널 빔들이 자유공간을 진행할 때 발생하는 대기 외란 영향은 위상판 모델로 정량화한다. 위상판은 구조상수 Cn2 값의 변동 범위 10-15에서 10-13 [m-2/3] 내에서 통계적으로 생성하여 구성한다. 특별히, 본 논의에서는 대기 요동의 강도가 최종 빔결합 효율에 미치는 영향을 분석하기 위해 위상판 모델의 구조 상수를 변화시켜가며 해당 목표 지점에서 3채널 결맞음 빔결합 방식을 통해 전송된 빔의 결합 형태, 왜곡 정도 및 빔결합 효율을 계산한다. 본 수치 모델을 통해 분석한 결과, 상기 주어진 대기 요동 조건하에서도 원거리 광학 에너지 전송에 결맞음 빔결합 방식을 사용할 경우, 수신부 유효 도달 전력을 비결맞음 빔결합 방식 대비 최소 3배 이상 확보할 수 있음을 확인할 수 있다. 본 수치 모델은, 원거리 광학 에너지 전송을 전산모사함에 있어서 다양한 형태의 대기 외란의 영향 및 빔결합 방식을 분석하는데 효과적으로 활용될 수 있을 것으로 기대한다.

Keywords

References

  1. O. Svelto, Principles of Lasers, Translated by D. C. Hanna, 5th ed. (Springer, MA, USA. 2010).
  2. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004). https://doi.org/10.1364/OPEX.12.006088
  3. W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, "Fiber lasers and their applications," Appl. Opt. 53, 6554-6568 (2014). https://doi.org/10.1364/AO.53.006554
  4. M. N. Zervas and C. A. Codemard, "High power fiber lasers: a review," IEEE J. Sel. Top. Quantum Electron. 20, 219-241 (2014). https://doi.org/10.1109/JSTQE.2014.2321279
  5. Z. Liu, X. Jin, R. Su, P. Ma, and P. Zhou, "Development status of high power fiber lasers and their coherent beam combination," Sci. China Inf. Sci. 62, 41301 (2019). https://doi.org/10.1007/s11432-018-9742-0
  6. Z. Liu, P. Zhou, X. Xu, X. Wang, and Y. Ma, "Coherent beam combining of high power fiber lasers: Progress and prospect," Sci. China Tech. Sci. 56, 1597-1606 (2013). https://doi.org/10.1007/s11431-013-5260-z
  7. J. C. Wyngaard, "Atmospheric turbulence," Annu. Rev. Fluid Mech. 24, 205-234 (1992). https://doi.org/10.1146/annurev.fl.24.010192.001225
  8. J. M. Beckers, "Adaptive optics for astronomy: principles, performance, and applications," Annu. Rev. Astron. Astrophys. 31, 13-62 (1993). https://doi.org/10.1146/annurev.aa.31.090193.000305
  9. J. H. Lee, S. Shin, G. N. Park, H.-G. Rhee, and H.-S. Yang, "Atmospheric turbulence simulator for adaptive optics evaluation on an optical test bench," Curr. Opt. Photon. 1, 107-112 (2017). https://doi.org/10.3807/COPP.2017.1.2.107
  10. P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, "Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm," Opt. Lett. 34, 2939-2941 (2009). https://doi.org/10.1364/OL.34.002939
  11. R. Uberna, A. Bratcher, T. G. Alley, A. D. Sanchez, A. S. Flores, and B. Pulford, "Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide," Opt. Express 18, 13547-13553 (2010). https://doi.org/10.1364/OE.18.013547
  12. H. K. Ahn and H. J. Kong, "Cascaded multi-dithering theory for coherent beam combining of multiplexed beam elements," Opt. Express 23, 12407-12413 (2015). https://doi.org/10.1364/OE.23.012407
  13. Y. Ma, X. Wang, J. Leng, H. Xiao, X. Dong, J. Zhu, W. Du, P. Zhou, X. Xu, L. Si, Z. Liu, and Y. Zhao, "Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique," Opt. Lett. 36, 951-953 (2011). https://doi.org/10.1364/OL.36.000951
  14. C. Geng, W. Luo, Y. Tan, H. Liu, J. Mu, and X. Li, "Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control," Opt. Express 21, 25045-25055 (2013). https://doi.org/10.1364/OE.21.025045
  15. P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, and X. Xu, "Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm," Appl. Phys. Lett. 94, 231106 (2009). https://doi.org/10.1063/1.3152282
  16. Z. M. Huang, C. L. Liu, J. F. Li, and D. Y. Zhang, "A highspeed, high-efficiency phase controller for coherent beam combining based on SPGD algorithm," Quantum Electron. 44, 301 (2014). https://doi.org/10.1070/qe2014v044n04abeh015230
  17. Z.-S. Liu, D. Wu, J.-T. Liu, K.-L. Zhang, W.-B. Chen, X.-Q. Song, J. W. Hair, and C.-Y. She, "Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter," Appl. Opt. 41, 7079-7086 (2002). https://doi.org/10.1364/AO.41.007079
  18. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, "Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W," IEEE J. Sel. Top. Quantum Electron. 13, 546-551 (2007). https://doi.org/10.1109/JSTQE.2007.896639
  19. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company Publishers, USA. 2005).
  20. R. Frehlich, "Simulation of laser propagation in a turbulent atmosphere," Appl. Opt. 39, 393-397 (2000). https://doi.org/10.1364/AO.39.000393
  21. A. Consortini, F. Cochetti, J. H. Churnside, and R. J. Hill, "Inner-scale effect on irradiance variance measured for weak-to-strong atmospheric scintillation," J. Opt. Soc. Am. A 10, 2354-2362 (1993). https://doi.org/10.1364/JOSAA.10.002354
  22. R. G. Lane, A. Glindemann, and J. C. Dainty, "Simulation of a Kolmogorov phase screen," Waves. Random Media 2, 209-224 (1992). https://doi.org/10.1088/0959-7174/2/3/003
  23. K. S. Gage, J. L. Green, and T. E. VanZandt, "Use of Doppler radar for the measurement of atmospheric turbulence parameters from the intensity of clear-air echoes," Radio Sci. 15, 407-416 (1980). https://doi.org/10.1029/RS015i002p00407
  24. A. Rocca, F. Roddier, and J. Vernin, "Detection of atmospheric turbulent layers by spatiotemporal and spatioangular correlation measurements of stellar-light scintillation," J. Opt. Soc. Am. 64, 1000-1004 (1974). https://doi.org/10.1364/JOSA.64.001000