DOI QR코드

DOI QR Code

Slim Mobile Lens Design Using a Hybrid Refractive/Diffractive Lens

굴절/회절 하이브리드 렌즈 적용 슬림 모바일 렌즈 설계

  • Park, Yong Chul (Department of Optical Engineering, Kongju National University) ;
  • Joo, Ji Yong (Department of Optical Engineering, Kongju National University) ;
  • Lee, Jun Ho (Department of Optical Engineering, Kongju National University)
  • 박용철 (공주대학교 기하광학연구실) ;
  • 주지용 (공주대학교 기하광학연구실) ;
  • 이준호 (공주대학교 기하광학연구실)
  • Received : 2020.09.24
  • Accepted : 2020.10.09
  • Published : 2020.12.25

Abstract

This paper reports a slim mobile lens design using a hybrid refractive/diffractive optical element. Conventionally a wide field of view (FOV) camera-lens design adopts a retrofocus type having a negative (-) lens at the forefront, so that it improves in imaging performance over the wide FOV, but with the sacrifice of longer total track length (TTL). However, we chose a telephoto type as a baseline design layout having a positive (+) lens at the forefront, to achieving slimness, based on the specification analysis of 23 reported optical designs. Following preliminary optimization of a baseline design and aberration analysis based on Zernike-polynomial decomposition, we applied a hybrid refractive/diffractive element to effectively reduce the residual chromatic spherical aberration. The optimized optical design consists of 6 optical elements, including one hybrid element. It results in a very slim telephoto ratio of 1.7, having an f-number of 2.0, FOV of 90°, effective focal length of 2.23 mm, and TTL of 3.7 mm. Compared to a comparable conventional lens design with no hybrid elements, the hybrid design improved the value of the modulation transfer function (MTF) at a spatial frequency of 180 cycles/mm from 63% to 71-73% at zero field (0 F), and about 2-3% at 0.5, 0.7, and 0.9 fields. It was also found that a design with a hybrid lens with only two diffraction zones at the stop achieved the same performance improvement.

본 논문은 하이브리드 굴절/회절광학소자를 이용한 초슬림 모바일 카메라 렌즈를 보고한다. 먼저 앞서 보고된 23개의 광학 설계 사양 분석을 통해 전장길이(total track length) 최소화를 위하여, 광시야 렌즈 설계에서 일반적으로 적용되는 음(-)의 렌즈를 제1렌즈로 사용하는 리트로포커스(retrofocus) 타입이 아닌, 양(+)의 렌즈가 제일 먼저 선행하는 텔레포토(telephoto) 타입을 선택하였다. 이후 초기 최적 설계 및 제르니케 다항식 기반 수차 분석을 통한 보정 설계를 진행하였으며, 보정 설계 과정에서 잔여 구면색수차(chromatic spherical aberration)의 효과적 제거를 위하여 굴절 및 회절이 결합된 하이브리드 렌즈 1매를 적용하였다. 적용된 최종 설계는 하이브리드 렌즈 1매 포함 총 6매의 렌즈를 이용하여 F/2.0, 화각 90°, 유효초점길이 2.23 mm, 전장길이 3.7 mm를 달성하였고, 결과적으로 1.7의 낮은 전장길이 대 초점길이 비 즉, 텔레포토비(telephoto ratio)를 달성하였다. 동일 전장길이를 갖는 하이브리드 렌즈 미적용 비교 설계 대비, 공간주파수 180 cycles/mm에서 MTF 값이 중심 시야에서는 63%에서 71~73%로 약 8~10% 개선되었고, 0.5, 0.7, 0.9 시야에서도 2~3% 개선되었다. 또한, 가공성 및 회절 패턴에 의한 산란 등을 고려하였을 때 조리개에 위치한 렌즈가 하이브리드 렌즈로 적절함을 알 수 있었고, 이 경우 2개의 회절존으로도 성능 개선이 확인되었다.

Keywords

References

  1. L. Li and A. Y. Yi, "An affordable injection-molded precision hybrid glass-polymer achromatic lens," Int. J. Adv. Manuf. Technol. 69, 1461-1467 (2013). https://doi.org/10.1007/s00170-013-5128-1
  2. T. Stone and N. George, "Hybrid diffractive-refractive lenses and achromats," Appl. Opt. 27, 2960-2971 (1988). https://doi.org/10.1364/AO.27.002960
  3. T. Hornung and P. Nitz, "Light diffraction by concentrator Fresnel lenses," Opt. Express 22, A686-A704 (2014). https://doi.org/10.1364/OE.22.00A686
  4. Y. G. Hong, S. I. Kim, W. G. Yeo, and C. K. Lee, "Telephotolens design with refractive/diffractive hybrid lens," J. Opt. Soc. Korea 1, 74-80 (1997). https://doi.org/10.3807/JOSK.1997.1.2.074
  5. S. C. Park and J. H. Jeong, "Optical system design for compact digital still camera using diffractive optical elements," Korean J. Opt. Photon. 11, 239-245 (2000).
  6. S. C. Park, "Optical system design fur head mounted display using diffractive optical elements," Korean J. Opt. Photon. 12, 512-518 (2001).
  7. H. S. Lee, C. S. Rim, J. H. Jo, and S. Chang, "Hybrid (refractive/diffractive) lens design for the ultra-compact camera module," Korean J. Opt. Photon. 12, 240-249 (2001).
  8. Y. Liu, Q. Sun, Z. Lu, J. Yue, H. Zhang, and R. Zhu, "Athermal design of hybrid refractive/harmonic diffractive optical system for far-infrared multi-band," Proc. SPIE 7282, 72823Q (2009).
  9. B.-I. Ahn, Y.-S. Kim, and S.-C. Park, "Athermal and achromatic design for a night vision camera using tolerable housing boundary on an expanded athermal glass map," Curr. Opt. Photon. 1, 125-131 (2017). https://doi.org/10.3807/COPP.2017.1.2.125
  10. S.-H. Lee, N.-C. Park, and Y.-P. Park, "Breaking diffraction limit of a small f-number compact camera using wavefront coding," Opt. Express 16, 13569-13578 (2008). https://doi.org/10.1364/OE.16.013569
  11. P. Wang, N. Mohammad, and R. Menon, "Chromaticaberration-corrected diffractive lenses for ultra-broadband focusing," Sci. Rep. 6, 21545 (2016). https://doi.org/10.1038/srep21545
  12. Samsung, Galaxy S20 Specifications (Samsung), https://www.samsung.com/us/mobile/galaxy-s20-5g/specs/ (Accessed date: 10 Aug. 2020).
  13. Apple Inc., iPhone 11 Specifications (Apple Inc.), https://www.apple.com/kr/iphone-11/specs/ (Accessed date: 10 Aug. 2020).
  14. W. J. Smith, Modern Lens Design, 2nd ed. (McGraw-Hill Education, NY, US, 2004), Chapter 13.
  15. W. T. Welford, Aberrations of Optical Systems (CRC Press, NY, US, 1986), Chapter 8.
  16. H. C. Tang, C. S. Chen, and H.-H. Huang, "Thin optical lens assembly," US Patent 8654454B2 (2014).
  17. Y. H. Park, S. G. Choi, D. S. Jang, and K. Y. No, "Very small aspherical plastic lens system for a camera of a camera phone," KR Patent 1004323710000 (2003).
  18. H. X. Huang, W. M. Jing, and D. Lu, "Thin aspheric lens for mobile phone," Appl. Opt. 31, 365-369 (2010).
  19. J. H. Cho, "Photographic lens optical system," KR Patent No. 1020090041342 (2009).
  20. X. Peng, "Design of high pixel mobile phone camera lens," Res. J. Appl. Sci., Eng. Technol. 6, 1160-1165 (2013). https://doi.org/10.19026/rjaset.6.3926
  21. J. Y. Zhang and Y. Q. Huang, "Design of 10 mega-pixel mobile phone Lens," in Proc. Third International Conference on Instrumentation, Measurement, Computer, Communication and Control (Shenyang, China, Sep. 2013), pp. 569-573.
  22. D. F. Song, P. Zhang, C. Wang, R. J. Zhang, Z. Y. Ren, and J. T. Bai, "Design of mobile phone camera lens based on ZEMAX," J. Appl. Opt. 31, 34-38 (2010). https://doi.org/10.3969/j.issn.1002-2082.2010.01.008
  23. M. Y. Choi and J. Y. Lee, "Optical design of 2 mega mobile phone systems using axial GRIN lens," in Proc. The Optical Society of Korea Summer Meeting (Korea, Jul. 2007), W1B-II3.
  24. C. Y. Lee, M.-C. Tsai, and T.-W. Chiang, "Lens having aspheric surfaces," US Patent 7079330B2 (2006).
  25. T.-H. Tsai, "Optical lens system for taking image," US Patent 7643225B1 (2010).
  26. S. J. Kim, H. J. Jung, and H. S. Lim, "The design of wide angle mobile camera corrected optical distortion for peripheral area," J. Korean Ophthalmic Opt. Soc. 18, 503-507 (2013). https://doi.org/10.14479/jkoos.2013.18.4.503
  27. Y. Shinohara, "Imaging lens," US Patent 7345830B2 (2008).
  28. H. B. Park, "Photographic lens optical system," KR Patent 1009596870000 (2010).
  29. H.-H. Huang, "Optical imaging lens assembly," US Patent 9772472B2 (2016).
  30. T.-H. Tsai, "Image pickup optical system," US Patent 201201 47482A1 (2013).
  31. T.-H. Tsai and M.-T. Chung, "Imaging lens system," US Patent 20130182335A1 (2013).
  32. D. Kwon, "Imaging lens and camera module," US Patent 8817393B2 (2014).
  33. Y. Kubota, "Imaging lens," US Patent 8411376B2 (2013).
  34. H. Fukaya, "Imaging lens," US Patent 20140139719A1 (2014).
  35. K. Sato, "Single focus wide-angle lens," US Patent 7099092B2 (2006).
  36. S. C. Choi, S. N. Nam, and K. Y. No, "Photographing wide angle lens system corrected distortion," KR Patent 1014126270000 (2014).
  37. N.-Y. Tang, "Wide angle lens," US Patent No. 7538958B2 (2009).
  38. X. M. Liu and J. Y. Zeng, "Lens imaging system of high-pixel fish-eye lens," CN Patent 102778745B (2015).
  39. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).
  40. Optical Research Associates, Pasadena, CA, US, CODE-V Reference Manual Ver. 11.1 (2017).
  41. A. Guidry, M. Kyrish, L. Stone, M. Fraelich, O. Lechuga, and N. Claytor, "Distinguishing characteristics of diffractive optical elements and Fresnel lenses," Proc. SPIE 11487, 1148715 (2020).