DOI QR코드

DOI QR Code

Analysis of Power Degradation and Distortion in Coherent-Beam Combining with Lens Aberration

렌즈 수차에 의한 타일형 빔 결합 출력 감쇠와 왜곡 현상 분석

  • Kim, Byungho (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Na, Jeongkyun (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Jeong, Yoonchan (Department of Electrical and Computer Engineering, Seoul National University)
  • 김병호 (서울대학교 공과대학 전기.정보공학부) ;
  • 나정균 (서울대학교 공과대학 전기.정보공학부) ;
  • 정윤찬 (서울대학교 공과대학 전기.정보공학부)
  • Received : 2020.11.10
  • Accepted : 2020.11.17
  • Published : 2020.12.25

Abstract

In this paper, we quantitatively analyze the effect of lens aberration on the degradation of beam-coupling efficiency of a tiled coherent-beam combining system. The Zernike polynomial is used to quantify the aberration of the lens, and Fresnel diffraction is applied to numerically simulate the change in the peak light intensity when combined at a distance. The results of this paper will be useful for quantitative prediction of the beam-combining efficiency that is degraded by aberration of the lens, and it is expected to be helpful for the optimal design of a practical tiled coherent beam-combining system.

본 논문에서는 타일형 결맞음 빔 결합 시스템에서 렌즈의 수차가 빔 결합 효율 저하에 미치는 영향을 정량적으로 분석하였다. 렌즈의 수차를 정량화하기 위하여 Zernike 다항식 방법을 사용하고, 프레넬 회절을 적용하여 빔 결합 상황에서 첨두강도의 변화를 수치적으로 시뮬레이션하였다. 본 논문의 결과는 향후, 실제 상황에서 주어진 렌즈의 수차에 의해 저하되는 빔 결합 효율에 대한 정량적인 예측과 또한, 실제 타일형 결맞음 빔 결합 시스템의 최적 설계에 유용하게 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, and K. Urban, "A spherical-aberration-corrected 200 kV transmission electron microscope," Ultramicroscopy 75, 53-60 (1998). https://doi.org/10.1016/S0304-3991(98)00048-5
  2. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, "Adaptive aberration correction in a confocal microscope," Proc. Natl. Acad. Sci. U.S.A. 99, 5788-5792 (2002). https://doi.org/10.1073/pnas.082544799
  3. J. Kim, "Analysis of corneal higher-order aberrations after myopic refractive surgery," Curr. Opt. Photon. 3, 72-77 (2019). https://doi.org/10.3807/COPP.2019.3.1.072
  4. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, "The manufacture of microlenses by melting photoresist," Meas. Sci. Tech. 1, 759 (1990). https://doi.org/10.1088/0957-0233/1/8/016
  5. A. Miks and J. Novak, "Third-order aberration coefficients of a thick lens with a given value of its focal length," Appl. Opt. 57, 4263-4266 (2018). https://doi.org/10.1364/AO.57.004263
  6. R. J. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, 207-211 (1976). https://doi.org/10.1364/JOSA.66.000207
  7. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004). https://doi.org/10.1364/OPEX.12.006088
  8. A. Kobyakov, M. Sauer, and D. Chowdhury, "Stimulated Brillouin scattering in optical fibers," Adv. Opt. Photonics 2, 1-59 (2010). https://doi.org/10.1364/AOP.2.000001
  9. R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Opt. 11, 2489-2494 (1972). https://doi.org/10.1364/AO.11.002489
  10. A. V. Smith and J. J. Smith, "Mode instability in high power fiber amplifiers," Opt. Express 19, 10180-10192 (2011). https://doi.org/10.1364/OE.19.010180
  11. Y. Kwon, K, Park, D. Lee, H. Chang, S. Lee, L. A. Vazquez-Zuniga, Y. S. Lee, D. H. Kim, H. T. Kim, and Y. Jeong, "Current status and prospects of high-power fiber laser technology," Korean J. Opt. Photon. 27, 1-17 (2016). https://doi.org/10.3807/KJOP.2016.27.1.001
  12. S. J. Augst, T. Y. Fan, and A. Sanchez, "Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers," Opt. Lett. 29, 474-476 (2004). https://doi.org/10.1364/OL.29.000474
  13. W. H. Southwell, "Validity of the Fresnel approximation in the near field," J. Opt. Soc. Am. 71, 7-14 (1981). https://doi.org/10.1364/JOSA.71.000007
  14. J. Y. Wang and D. E. Silva, "Wave-front interpretation with Zernike polynomials," Appl. Opt. 19, 1510-1518 (1980). https://doi.org/10.1364/AO.19.001510