DOI QR코드

DOI QR Code

Optical Design of an Off-Axial-Field Two-Mirror System with a Displaced Stop and a Secondary Mirror

조리개와 제 2거울이 횡이동된 비축시야 2반사 광학계 설계

  • Nam, Ji-Woo (Department of Laser and Optical Information Engineering, Cheongju University) ;
  • Lee, Jong-Ung (Department of Laser and Optical Information Engineering, Cheongju University)
  • 남지우 (청주대학교 레이저광정보공학과) ;
  • 이종웅 (청주대학교 레이저광정보공학과)
  • Received : 2020.09.14
  • Accepted : 2020.10.12
  • Published : 2020.12.25

Abstract

By using an off-axial field with an inverse Cassegrain system where the aperture stop is at the secondary mirror, the two-mirror system can be used for a wide-field objective. However, aberration corrections in conventional two-mirror systems are limited because the design parameters are too small. In this study, we present a new improved design of the off-axial-field two-mirror system. The new design has an independently displaced aperture stop and a secondary mirror. The new design parameters yield more improvement in correction for 5th-order coma and astigmatism, and better aberration balancing for the whole off-axial field. The spot sizes of the new design system are reduced to half of those for a conventional reference design, and the improvement effects are shown for the whole field evenly.

조리개가 제 2거울에 있는 inverse Cassegrain 광학계에서 비축시야를 사용하면, 이 2반사경계는 넓은 시야를 가지는 대물광학계로 사용할 수 있다. 하지만 이 전통적인 회전대칭 구조의 반사경계는 설계변수의 수가 너무 적기 때문에 수차보정에 한계가 있다. 이 연구에서는 조리개와 제 2거울을 별도로 횡이동시켜 성능을 개선한 새로운 2반사 광학계를 설계하였다. 새로운 설계변수를 사용하여 5차 코마와 비점수차에 대한 보정이 개선되었으며, 시야 전체에서 보다 좋은 수차균형을 얻을 수 있었다. 새로 설계된 비축시야 2반사경계는 회전대칭 구조의 통상적인 2반사경계와 비교하여 spot의 크기가 1/2 수준으로 줄어들었으며, 개선의 효과가 시야 전체에 고르게 나타나고 있다.

Keywords

Acknowledgement

이 논문은 2019년도 청주대학교 연구장학 지원으로 수행되었습니다.

References

  1. S. H. Kim, H. J. Kong, J. U. Lee, J. H. Lee, and J. H. Lee, "Design and construction of an Offner spectrometer based on geometrical analysis of ring fields," Rev. Sci. Instrum. 85, 083108 (2014). https://doi.org/10.1063/1.4892479
  2. J. U. Lee and S.-M. Yu, "Analytic design procedure of three-mirror telescope corrected for spherical aberration, coma, astigmatism, and Petzval field curvature," J. Opt. Soc. Korea 13, 184-192 (2009). https://doi.org/10.3807/JOSK.2009.13.2.184
  3. I. Moon, S. Lee, J. Lim, H.-S. Yang, H.-G. Rhee, J. B. Song, Y. W. Lee, J. U. Lee, and H. Jin, "Design and development of a wide field telescope," Proc. SPIE 8444, 844448 (2012).
  4. J. U. Lee, Y. Kim, S. H. Kim, Y. Kim, and H. Kim, "Optical design of an image-space telecentric two-mirror system for wide-field line imaging," Curr. Opt. Photon 1, 344-350 (2017). https://doi.org/10.3807/COPP.2017.1.4.344
  5. G. I. Lebedeva and A. A. Garbul, "Prospective aerospace reflective objectives," J. Opt. Technol. 61, 610-614 (1994).
  6. H.-J. Oh and J.-U. Lee, "Optical design of a wide-field off-axis two-mirror system without ray obstruction," Korean J. Opt. Photon. 28, 263-272 (2017). https://doi.org/10.3807/KJOP.2017.28.6.263
  7. S. Rosin, "Inverse Cassegrainian systems," Appl. Opt. 7, 1483-1497 (1968). https://doi.org/10.1364/AO.7.001483
  8. W. B. Wetherel l and M. P. Rimmer, "General anal ysis of aplanatic Cassegrain, Gregorian, and Schwarzschild telescopes," Appl. Opt. 11, 2817-2832 (1972). https://doi.org/10.1364/AO.11.002817
  9. C. L. Wyman and D. Korsch, "Aplanatic two-mirror telescopes; a systematic study. 3: the Schwarzschild-Couder configuration," Appl. Opt. 14, 992-995 (1975). https://doi.org/10.1364/AO.14.000992
  10. H. Gross, F. Blechinger, and B. Achtner, Handbook of Optical Systems: Survey of Optical Instruments: Survey of Optical Instruments (Wiley-VCH, Weinheim, Germany, 2008), Vol. 4, Chapter 43.
  11. J. U. Lee, "Aberration correction of an off-axial field two-mirror system using a decentered aperture," Korean J. Opt. Photon. 31, 20-25 (2020). https://doi.org/10.3807/KJOP.2020.31.1.020
  12. J. Sasian, Introduction to Aberrations in Optical Imaging Systems (Cambridge University Press, Cambridge, UK, 2013).
  13. W. T. Welford, Aberrations of Optical System (Taylor & Francis Group, NY, USA, 1986).