DOI QR코드

DOI QR Code

Study of the Analysis Method for the Aspherical Tolerance of a Korsch Telescope Using a Q Polynomial

Q-Polynomial을 이용한 Korsch 망원경의 비구면 공차 분석 방법 연구

  • Jun, Won-Kyoun (Department of Nano-optical Engineering, Korea Polytechnic University) ;
  • Lee, Han-Yul (Department of Nano-optical Engineering, Korea Polytechnic University) ;
  • Lee, Sang-min (Department of Optics and Photonics, Yonsei University) ;
  • Kim, Ki-hwan (Department of Optics and Photonics, Yonsei University) ;
  • Park, Seung Han (Department of Optics and Photonics, Yonsei University) ;
  • Jung, Mee-Suk (Department of Nano-optical Engineering, Korea Polytechnic University)
  • 전원균 (한국산업기술대학교 나노반도체공학과) ;
  • 이한율 (한국산업기술대학교 나노반도체공학과) ;
  • 이상민 (연세대학교 광과학공학과) ;
  • 김기환 (연세대학교 광과학공학과) ;
  • 박승한 (연세대학교 광과학공학과) ;
  • 정미숙 (한국산업기술대학교 나노반도체공학과)
  • Received : 2020.10.17
  • Accepted : 2020.11.19
  • Published : 2020.12.25

Abstract

In this paper, we study the analysis method for the aspherical tolerance of a Korsch telescope using a Q polynomial. It is important to analyze the tolerances for evaluating quality in high-precision fabrication of aspherical reflectors for high-resolution satellites. Thus we express the aspheric surface in terms of a Q polynomial in which each coefficient term is composed independently, and analyze the tolerance of a Korsch telescope. We also analyze the tolerance using Zernike fringe sag, which expresses the shape error of an aspherical mirror. By comparing the two results, we confirm that the Q-polynomial method can be used to analyze an aspherical mirror.

본 논문에서는 Q-polynomial을 이용한 Korsch 망원경의 비구면 반사경 공차 분석을 진행하였다. 고해상도 인공위성의 비구면 반사경은 고정밀 제작이 요구되어 품질을 평가하기 위한 공차 분석이 중요하다. 따라서 비구면을 각 계수항들이 독립적인 Q-polynomial로 표현하고 Korsch 망원경 광학계의 공차 분석을 진행하였다. 또한 비구면 반사경에 형상 오차를 Zernike fringe sag로 부여하여 공차 분석하고 두 결과를 비교하여 Q-polynomial으로도 공차 분석할 수 있음을 확인하였다.

Keywords

References

  1. L. Sun, Q. Zhao, and Z. Shen, "Demand analysis of optical remote sensing satellites under the belt and road initiative," in 5th International Symposium of Space Optical Instruments and Applications (Springer Proceedings in Physics Series Vol. 232), H. P. Urbach, Q. Yu, ed. (Springer, Switzerland, 2020), pp. 11-20.
  2. H. B. Lee and S. C. Choi, "Technology trend of reflective optical system for defense weapons system," in Proc. OSK Annual Summer Meeting (Busan, Korea, Jul. 2020), W1F-II-2.
  3. Z. Chen, J. Zhu, J. Peng, X. Zhang, and J. Ren, "A coaxial and off-axial integrated three-mirror optical system with high resolution and large field of view," J. Opt. Soc. Korea 1, 94-100 (2016). https://doi.org/10.3807/JOSK.1997.1.2.094
  4. M. Metwally, T. M. Bazan, and F. Eltohamy, "Design of very high-resolution satellite telescopes part I: optical system design," IEEE Trans. Aerosp. Electron. Syst. 56, 1202-1208 (2020). https://doi.org/10.1109/taes.2019.2929969
  5. S. C. Choi, H. K. Kim, and Y. S. Kim, "Optical design of flat field anastigmatic three-mirror telescope," Korean J. Opt. Photon. 3, 175-182 (1997).
  6. Radiant ZEMAX LLC, ZEMAX User Manual (2011) [Online]. Available: https://neurophysics.ucsd.edu/Manuals/Zemax/ZemaxManual.pdf, pp. 341.
  7. J. Schwiegerling (2017), "Review of Zernike polynomials and their use in describing the impact of misalignment in optical systems," [Video]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10377/103770D/Review-of-Zernike-polynomials-and-their-use-in-describing-the/10.1117/12.2275378.short?SSO=1.
  8. Z. Zheng, X. Sun, X. Liu, and P. Gu, "Design of reflective projection lens with Zernike polynomials surfaces," Displays 29, 412-417 (2008). https://doi.org/10.1016/j.displa.2008.01.001
  9. K.-I. Seon, I. S. Yuk, K.-S. Ryu, J. H. Park, H. Jin, J.-H. Seon, S.-H. Oh, J.-G. Rhee, D.-H. Lee, U.-W. Nam, W. Han, and K.-W. Min, "Error budget analysis of FIMS optical system," J. Astron. Space Sci. 18, 219-230 (2001).
  10. G. W. Forbes, "Shape specification for axially symmetric optical surfaces," Opt. Express 15, 5218-5226 (2007). https://doi.org/10.1364/OE.15.005218