DOI QR코드

DOI QR Code

Analysis of Seismic Performance of Modular Containment Structure for Small Modular Reactor

소형 원자로용 모듈화 격납구조의 내진성능 분석

  • 박우룡 (서울시립대학교 토목공학과) ;
  • 임성순 (서울시립대학교 토목공학과)
  • Received : 2019.09.09
  • Accepted : 2020.01.03
  • Published : 2020.01.31

Abstract

The seismic performance of a containment structure should be secured to maintain the structural soundness of a containment structure under various earthquakes that occur globally. Therefore, an analysis of the seismic performance of a modular containment structure for a small modular reactor is also required. To analyze the seismic performance of modular containment, FEM models with contact surfaces between the modules and tendon were prepared and the modal and seismic analyses were performed. The displacement, stress, and gap size of modular containment under earthquake wave were analyzed. The effects of the tendon force, friction coefficient, and earthquake wave on the seismic performance were analyzed. The seismic performance of monolithic containment was also analyzed for comparison. In the 1st and 2nd natural modes, which most likely affect, the modular containment showed horizontal dynamic behavior, which is similar to monolithic containment, because of the combined effects of the tendon force and friction force between modules. When the combined effect is sufficient, the seismic performance of the modular containment is secured over a certain level. An additional increase in seismic performance is expected when some material with a larger friction coefficient is adopted on the contact surface.

전세계적으로 다양한 규모의 지진이 계속하여 발생하고 있으므로 원자로용 격납구조가 구조적인 건전성을 유지하기 위해서는 내진성능의 확보가 필수적이다. 따라서 소형 원자로용 모듈화 격납구조의 경우에도 내진성능의 분석이 필요하다. 본 연구에서는 소형 원자로용 모듈화 격납구조의 내진성능 분석을 위해 콘크리트 모듈 간 접촉면과 긴장재를 반영한 유한요소 모델을 작성하여 고유진동해석과 지진해석을 수행한다. 이를 통해 입력지진파에 의한 모듈화 격납구조의 변위, 응력 및 연결부 접촉면 갭 크기의 변화특성을 분석한다. 그리고 긴장력, 연결부 접촉면 마찰계수 및 입력지진파의 변화가 내진성능에 미치는 영향을 분석한다. 비교를 위해 일체화 격납구조의 내진성능도 분석한다. 긴장재의 긴장력과 모듈 연결부 접촉면의 마찰력에 의한 합성효과로 모듈화 격납구조는 발생 가능성이 가장 높은 1, 2차 고유모드에서 일체화 격납구조와 유사한 횡방향 동적거동을 한다. 긴장재의 긴장력과 연결부 접촉면의 마찰력에 의한 합성효과가 충분히 발휘될 경우, 연결부를 갖는 모듈화 격납구조에서도 일정수준 이상의 내진성능이 확보된다. 연결부 접촉면 재질을 마찰계수가 더 큰 재료로 바꿀 경우 추가적인 내진성능 향상이 기대된다.

Keywords

References

  1. IAEA, Advances in Small Modular Reactor Technology Developments, p.250, International Atomic Energy Agency, 2018, p.1
  2. International Atomic Energy Agency. IAEA ARIS(Advanced Reactors Information System) [Internet]. IAEA, c2019 [cited 2019 June 04], Available From: https://aris.iaea.org/sites/SMR.html (accessed Jun. 04, 2019).
  3. F. Lin, H. Li, "Safety analysis of nuclear containment vessels subjected to strong earthquakes and subsequent tsunamis", Nuclear Engineering and Technology, Vol.49, No.5, pp.1079-1089, Aug. 2017. DOI: https://doi.org/10.1016/j.net.2017.03.008
  4. P. Yi, Q. Wang, X. Kong, "Aseismic safety analysis of a prestressed concrete containment vessel for CPR1000 nuclear power plant", Earthquake Engineering and Engineering Vibration, Vol.16, No.1, pp.55-67, Jan. 2017. DOI: https://doi.org/10.1007/s11803-017-0368-y
  5. J. H. Lee, J. K. Kim, K. J. Hong, "Characteristics of Earthquake Responses of an Isolated Containment Building in Nuclear Power Plants According to Natural Frequency of Soil", Earthquake Engineering Society of Korea, Vol.17, No.6, pp.245-255, Nov. 2013. DOI: https://doi.org/10.5000/EESK.2013.17.6.245
  6. J. W. Huh, H. S. Jung, J. M. Kim, C. H. Hyun, "Seismic Response Analysis of NPP Containment Structures to Improve the Guidelines of Strong Motion Duration", Earthquake Engineering Society of Korea, Vol.15, No.4, pp.33-43, Aug. 2011. DOI: http://dx.doi.org/10.5000/EESK.2011.15.4.033
  7. T. Hirama, M. Goto, H. Kumagai, Y. Naito, A. Suzuki, H. Abe, K. Takiguchi, H. Akiyama, "Seismic proof test of a reinforced concrete containment vessel (RCCV): Part 3. Evaluation of seismic safety margin", Nuclear Engineering and Design, Vol.237, No.11, pp.1128-1139, Jun. 2007. DOI: https://doi.org/10.1016/j.nucengdes.2007.01.009
  8. N. J. S. Gorst, S. J. Williamson, P. F. Pallet, L. A. Clark, Friction in temporary works, Technical Report, The University of Birmingham, United Kingdom, pp.20.
  9. D. A. Gasparini, E. H. Vanmarcke, SIMQKE: A Program for Artificial Motion Generation, Technical Report, Department of Civil Engineering, MIT, US, pp.1-101.
  10. D. K. Kim. SSL Software & EQ Data. Structural System Laboratory [Internet]. Kusan National University, c2018 [cited 2018 September 22], Available From: http://www.kim2kie.com/3_ach/SSL_Software.php (accessed Jun. 04, 2019).
  11. U.S. NRC, Regulatory Guide 1.60 Design Response Spectra for Seismic Design of Nuclear Power Plants, Technical Report, U.S. Nuclear Regulatory Commision, US, pp.1-13.
  12. ASCE, ASCE Stanadard 4-98 Seismic Analysis of Safety-Related Nuclear Structures and Commentary, p.134, ASCE, 1999, pp.1-35
  13. W. R. Park, S. S. Yhim, "Analysis of Internal Pressure Capacity of Modular Containment Structure for Small Modular Reactor", Journal of the Korea Academia-Industrial cooperation Society, Vol.20, No.8, pp.362-370, Aug. 2019. DOI: http://dx.doi.org/10.5762/KAIS.2019.20.8.362
  14. S. G. Cho, S. H. Lee, "Seismic Design of Safety Related Concrete Structures of Nuclear Power Plant", Magazine of the Korea Concrete Institute, Vol.23, No.4, pp.22-27, Jul. 2011. DOI: http://dx.doi.org/10.22636/MKCI.2011.23.4.22