DOI QR코드

DOI QR Code

Role of the ApxIB/ApxID exporter in secretion of the ApxII and ApxIII toxins in Actinobacillus pleuropneumoniae

  • Yoo, Hye-Jin (Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University) ;
  • Lee, Seungwoo (Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University) ;
  • Ryu, Doug-Young (Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University)
  • Received : 2020.05.26
  • Accepted : 2020.09.17
  • Published : 2020.12.30

Abstract

Apx toxins are a virulent factor of Actinobacillus pleuropneumoniae (App). At least four genes, apxC, apxA, apxB, and apxD, are involved in the release of Apx toxins from App. apxA encodes Apx toxins, whereas apxB and apxD encode exporters. Some serotypes of App such as serotype 2 retain apxIBD, apxIICA, and apxIIICABD. Although the specificity of the ApxIB/ApxID exporter to ApxII has been established in those serotypes, that to ApxIII is under-studied. We constructed an apxIB- and apxID-lacking mutant strain of the App serotype 2 to study whether the ApxIB/ApxID exporter is capable of secreting both ApxII and ApxIII toxins.

Keywords

References

  1. Frey J. Detection, identification, and subtyping of Actinobacillus pleuropneumoniae. Methods Mol Biol 2003;216:87-95.
  2. Frey J. Virulence in Actinobacillus pleuropneumoniae and RTX toxins. Trends Microbiol 1995;3:257-261. https://doi.org/10.1016/S0966-842X(00)88939-8
  3. Sassu EL, Bosse JT, Tobias TJ, Gottschalk M, Langford PR, Hennig-Pauka I. Update on Actinobacillus pleuropneumoniae-knowledge, gaps and challenges. Transbound Emerg Dis 2018;65 Suppl 1:72-90. https://doi.org/10.1111/tbed.12739
  4. Bosse JT, Li Y, Sarkozi R, Fodor L, Lacouture S, Gottschalk M, Casas Amoribieta M, Angen O, Nedbalcova K, Holden MT, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR; BRaDP1T consortium. Proposal of serovars 17 and 18 of Actinobacillus pleuropneumoniae based on serological and genotypic analysis. Vet Microbiol 2018;217:1-6. https://doi.org/10.1016/j.vetmic.2018.02.019
  5. Chiers K, De Waele T, Pasmans F, Ducatelle R, Haesebrouck F. Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Vet Res 2010;41:65. https://doi.org/10.1051/vetres/2010037
  6. Prideaux CT, Lenghaus C, Krywult J, Hodgson AL. Vaccination and protection of pigs against pleuropneumonia with a vaccine strain of Actinobacillus pleuropneumoniae produced by site-specific mutagenesis of the ApxII operon. Infect Immun 1999;67:1962-1966. https://doi.org/10.1128/IAI.67.4.1962-1966.1999
  7. Jansen R, Briaire J, Kamp EM, Gielkens AL, Smits MA. Structural analysis of the Actinobacillus pleuropneumoniae-RTX-toxin I (ApxI) operon. Infect Immun 1993;61:3688-3695. https://doi.org/10.1128/IAI.61.9.3688-3695.1993
  8. Park C, Ha Y, Kim S, Chae C, Ryu DY. Construction and characterization of an Actinobacillus pleuropneumoniae serotype 2 mutant lacking the Apx toxin secretion protein genes apxIIIB and apxIIID. J Vet Med Sci 2009;71:1317-1323. https://doi.org/10.1292/jvms.001317
  9. Lee SH, Lee S, Chae C, Ryu DY. A recombinant chimera comprising the R1 and R2 repeat regions of M. hyopneumoniae P97 and the N-terminal region of A. pleuropneumoniae ApxIII elicits immune responses. BMC Vet Res 2014;10:43. https://doi.org/10.1186/1746-6148-10-43