DOI QR코드

DOI QR Code

Fabrication and Evaluation Hydrogenation Absorbing on Mg2NiHx-10 wt% CaF2 Composites

Mg2NiHx-10wt% CaF2 수소저장합금의 제조와 수소화 흡수평가

  • YU, JE-SEON (Department of Materials Science & Engineering, Korea National University of Transportation) ;
  • HAN, JUNG-HUM (Department of Materials Science & Engineering, Korea National University of Transportation) ;
  • SIN, HYO-WON (Department of Materials Science & Engineering, Korea National University of Transportation) ;
  • HONG, TAE-WHAN (Department of Materials Science & Engineering, Korea National University of Transportation)
  • 유제선 (한국교통대학교 화공신소재고분자공학부 신소재공학전공) ;
  • 한정흠 (한국교통대학교 화공신소재고분자공학부 신소재공학전공) ;
  • 신효원 (한국교통대학교 화공신소재고분자공학부 신소재공학전공) ;
  • 홍태환 (한국교통대학교 화공신소재고분자공학부 신소재공학전공)
  • Received : 2020.10.20
  • Accepted : 2020.12.30
  • Published : 2020.12.30

Abstract

It is possible that hydrogen could replace coal and petroleum as the predominant energy source in the near future, but several challenges including cost, efficiency, and stability. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and high absorption capacity. Their range of applications could be further extended if their hydrogenation properties could be improved. The main emphasis of this study was to investigate their hydrogenation properties for Synthesis of 10wt.% CaF2 in Mg2NiHx systems. The effect of BCR (66:1) and MA time (96 hours) on the hydrogenation properties of the composite was investigated. also, Mg2NiHx-10wt% CaF2 composites prepared by Mechanical Alloying are used in this work to illustrate the effect of catalysts on activation energy and kinetics of Magnesium hydride.

Keywords

References

  1. X. Xie, C. Ni, B. Wang, Y. Zhang, X. Zhao, L. Liu, B. Wang, and W. Du, "Recent advances in hydrogen generation process via hydrolysis of Mg-based materials: a short review", Journal of Alloys and Compounds, Vol. 816, 2020, pp. 152634, doi: https://doi.org/10.1016/j.jallcom.2019.152634.
  2. M. Gajdics, T. Spassov, V. K. Kis, E. Schafler, and A. Revesz, "Microstructural and morphological investigations on Mg-Nb2O5-CNT nanocomposites processed by high-pressure torsion for hydrogen storage applications", Int. J. Hydrogen Energy, Vol. 45, No. 14, 2020, pp. 7917-7928, doi: https://doi.org/10.1016/j.ijhydene.2019.06.165.
  3. F. A. Lewis and A. Aladjem, "Hydrogen metal systems I", Scitec Publications, Switzerland, 1996.
  4. R. Kirchheim, T. Mutschele, W. Kieninger, H. Gleiter, R. Birringer and T. D. Koble, "Hydrogen in amorphous and nanocrystalline metals", Mater. Sci. Eng., Vol. 99, 1988, pp. 457-462. https://doi.org/10.1016/0025-5416(88)90377-1
  5. A. K. Singh, A. K. Singh and O. N. Srivastava, "On the synthesis of the Mg2Ni alloy by mechanical alloying.", J. Alloy. Comp., Vol. 227, No. 63, 1995, pp. 63-68. https://doi.org/10.1016/0925-8388(95)01625-2
  6. L. Zaluski, A. Zaluska, and J. O. Strom-Olsen, "Nanocrystalline metal hydrides", J. Alloy. Comp., Vol. 253-254, 1997, pp. 70-79, doi: https://doi.org/10.1016/S0925-8388(96)02985-4.
  7. C. Iwakura, S. Nohara, S. G. Zhang, and H. Inoue, "Hydriding and dehydriding characteristics of an amorphous Mg2Ni-Ni composite", J. Alloy. Comp., Vol. 285, No. 1-2, 1999, pp. 246-249, doi: https://doi.org/10.1016/S0925-8388(98)00966-9.
  8. J. J. Reilly Jr. and R. H. Wiswall Jr., "Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4", Inorg. Chem., Vol. 7, No. 11, 1968, pp. 2254-2256, doi: https://doi.org/10.1021/ic50069a016.
  9. A. V. Rozhkov, G. Giavaras, Y. P. Bliokh, V. Freilikher, and F. Nori, "Electronic properties of mesoscopic graphene structures: charge confinement and control of spin and charge transport", Physics Reports, Vol. 503, 2011, pp. 77-114. https://doi.org/10.1016/j.physrep.2011.02.002
  10. L. Liao and X. Duan, "Graphene-dielectric integration for graphene transistors", Materials Science and Engineering, Vol. 70, No. 3-6, 2010, pp. 354-370, doi: https://doi.org/10.1016/j.mser.2010.07.003.
  11. P. A. Denis, R. Faccio, and F. Iribarne, "How is the stacking interaction of bilayer graphene affected by the presence of defects?", Computational and Theoretical Chemistry, Vol. 995, 2012, pp. 1-7. https://doi.org/10.1016/j.comptc.2012.06.014
  12. H. S. Ha, J. K. Lee, S. K. Kim, S. B. Jung, Y. J. Kim, and H. H. Jo, "Effects of CaO and Ca additions on Microstructure and Ignition Resistance of Pure Mg", Journal of Korea Foundry Society, Vol. 26, No. 3, 2006, pp. 146-151.
  13. L. M. Das, "Hydrogen engines: a view of the past and a look into the future", Int. J. Hydrogen Energy, Vol. 15, No. 6, 1990, pp. 425-443, doi: https://doi.org/10.1016/0360-3199(90)90200-I.
  14. K. W. Cho, J. H. Park, K. I. Kim, S. H. Kim, M. W. Jung, S. H. Kim, J. H. Choi, and T. H. Hong, "Hydrogenation Properties of Mg2Ni-(5, 10mass)NbHx Composites by Reactive Mechanical Alloying", Trans. of the Korean Hydrogen and New Energy Society, Vol. 20, No. 6, 2009, pp. 512-518.
  15. S. K. Sahoo, S. Parveen, and J. J. Panda, "The present and future of nanotechnology in human health care", Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 3, No. 1, 2007, pp. 20-31, doi: https://doi.org/10.1016/j.nano.2006.11.008.
  16. W. H. Suh, K. S. Suslick, G. D. Stucky, and Y. H. Suh, "Nanotechnology, nanotoxicology, and neuroscience", PProgress in Neurobiology, Vol. 87, No. 3, 2009, pp. 133-170, doi: https://doi.org/10.1016/j.pneurobio.2008.09.009.