DOI QR코드

DOI QR Code

Development of a Miniature Aerosol Separator for a Black Carbon Measuring Instrument

블랙카본 측정기용 초소형 사이클론 집진기 개발

  • Received : 2020.09.23
  • Accepted : 2020.11.11
  • Published : 2020.12.31

Abstract

Given the increasing interest in air pollution, several technologies to measure black carbon (BC) aerosol particles have been developed. As most BC aerosol particles are smaller than 1 ㎛, it is necessary to pre-separate the particles by size before a BC measuring instrument samples the aerosol particles. In this study, a miniature cyclone separator for portable BC measuring instruments was developed. A numerical approach was used to design the miniature cyclone separator with operating flow rates of 50, 100, or 150 mLPM, and then a prototype cyclone separator was manufactured for experimental validation. The numerical results of the cut-off size and pressure drop of the miniature cyclone separator agreed well with the experimental data. The cut-off sizes of the miniature cyclone separator were determined to be 2.9, 0.94, and 0.63 ㎛ for operating flow rates of 50, 100, and 150 mLPM, respectively. Thus, the miniature cyclone separator is suitable for use as a sampling inlet for the portable black carbon measuring instrument to sample BC aerosol or PM2.5 aerosol.

Keywords

References

  1. UNEP and WMO, Integrated Assessment of Black Carbon and Tropospheric Ozone, pp. 95-141, 2011.
  2. Donkey, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay M. E., Ferris, B. G., Benjamin, G. Ferris, Jr., and Speizer, F, E., "An Association between Air Pollution and Mortality in Six U.S. Cities", The New England Journal of Medicine, Vol. 329, pp. 1753-1759, 1993. https://doi.org/10.1056/NEJM199312093292401
  3. Clague, A. D. H., Donnet, J. B., Wang, T. K., Peng, J. C. M., "A comparison of diesel engine soot with carbon black", Carbon, Vol. 37, pp. 1553-1565, 1999. https://doi.org/10.1016/S0008-6223(99)00035-4
  4. Ray, M. B., Luning, P. E., Hoffmann, A. C., Plomp, A., Beumer, M. I. L., "Improving the removal efficiency of industrial-scale cyclones for particles smaller than five micrometre", International Journal of Mineral Processing, Vol. 53, pp. 39-47, 1999. https://doi.org/10.1016/S0301-7516(97)00055-0
  5. Ahn, Y. C., Jeong, H. K., Shin, H. S., Hwang, Y. J., Kim, G. T., Cheong, S. I,. Lee, J. K., Kim, C., "Design and performance evaluation of vacuum cleaners using cyclone technology", Korean Journal of Chemical Engineering, Vol. 23, pp. 925-930, 2006. https://doi.org/10.1007/s11814-006-0009-z
  6. Kenny, L. C., Gussman, R., Meyer, M., "Development of a sharp-cut cyclone for ambient aerosol monitoring applications", Aerosol Science and Technology, Vol. 32, pp. 491-511, 2000.
  7. Kenny, L. C., Gussman, R., "A direct approach to the design of cyclones for aerosol-monitoring applications", Journal of Aerosol Science, Vol. 31, pp. 1407-1420, 2000. https://doi.org/10.1016/S0021-8502(00)00047-1
  8. Moore, M. E., McFarland, A. R., "Design of Stairmand-type sampling cyclones", American Industrial Hygiene Association Journal, Vol. 51, pp. 151-159, 1990. https://doi.org/10.1080/15298669091369475
  9. Moore, M. E., McFarland, A. R., "Performance modeling of single-inlet aerosol sampling cyclones", Environmental science & technology, Vol. 27, pp. 1842-1848, 1993. https://doi.org/10.1021/es00046a012
  10. Haiso, T. C., Chen, D. R., Son, S. Y., "Development of mini-cyclones as the size-selective inlet of miniature particle detectors", Journal of Aerosol Science, Vol. 40, pp. 481-491, 2009. https://doi.org/10.1016/j.jaerosci.2009.01.006
  11. Lapple, C. E., "Gravity and Centrifugal Separation", American Industrial Hygiene Association Quarterly, Vol. 11, No. 1, 40-48, 1950. https://doi.org/10.1080/00968205009344283
  12. Barth, W., "Design and layout of the cyclone separator on the basis of new investigations", Brennstoff-Warme-Kraft, Vol. 8, pp. 1-9, 1956.
  13. Iozia, D. L., Leith, D., "Effect of cyclone dimensions on gas flow pattern and collection efficiency", Aerosol Science and Technology, Vol. 10, No. 3, pp. 491-500, 1989. https://doi.org/10.1080/02786828908959289
  14. Iozia, D. L., Leith, D., "The Logistic Function and Cyclone Fractional Efficiency", Aerosol Science and Technology, Vol. 12, No. 3, pp. 598-606, 1990. https://doi.org/10.1080/02786829008959373
  15. Sun, X., Zhang, Z., Chen, D. R., "Numerical modeling of miniature cyclone", Powder Technology, Vol. 320, pp. 325-339, 2017. https://doi.org/10.1016/j.powtec.2017.07.053
  16. Cortes, C., Gil, A., "Modeling the gas and particle flow inside cyclone separators", Progress In Energy And Combusion Science, Vol. 33, pp. 409-452, 2007. https://doi.org/10.1016/j.pecs.2007.02.001
  17. Mohler, O., Benz, S., Saathoff, H., Schnaiter, M., Wagner, R., Schneider, J., and Wagner, S., "The Effect of Organic Coating of the Heterogeneous Ice Nucleation Efficiency of Mineral Dust Aerosols", Environmental Research Letters, Vol. 3, pp. 1-8, 2008.