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1. Introduction

With the development of human-centered design 

and manufacturing technologies in the automotive 

industry, reduction in vehicle vibration and noise 

has rapidly improved. As a result, the automotive 

features positioned nearest customers are important 

to customers buying their own vehicles. Thus, many 

automotive companies have worked toward 

evaluating and improving seat capabilities in a 

variety of ways[1-4]. In a vehicle seat, the vibration 

due to the state of the road surface directly 

influences passenger comfort. The seat frame also 

serves to protect passengers in a collision[1-3]. 

Recently, high-efficiency, eco-friendly automobiles 

have been developed in order to comply with 

stricter environmental regulations. However, the 

weight is inevitably increased in order to increase 
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vehicle performance, which has been a major 

concern from the early stages of vehicle 

development. Improving vehicle performance and 

reducing fuel consumption results in higher design 

costs. Many safety regulations must be satisfied by 

vehicle seats. The vehicle seat consists of the head 

restraint, the back frame, the cushion frame, and the 

seat support for passenger safety. Vibration analyses 

on three models with different shapes were carried 

out with the same material properties and constraint 

conditions[5-8]. Models 1, 2, and 3 were modeled 

with relatively simple designs by using CATIA. The 

areas touching the buttocks of passengers show the 

most deformation. This work shows that seat 

durability[9-10] and stability can vary by depending 

on the shape of the seat. 

2. Study Models and Boundary 

Conditions 

2.1 Study Models 

In this study, the rear seat frame of the car was 

modeled to reflect reality. Three models designed 

using the CATIA program are shown in Fig. 1. 

Models 1, 2, and 3 are fixed to the rails at the 

base of the seat, and model 3 has a greater bending 

angle than the other models. The material properties 

of aluminum alloy, as used in the models, are 

shown in Table 1. The numbers of nodes and 

elements on each model are shown in Table 2. 

2.2 Constraint Conditions

Models 1, 2, and 3 were designed according to 

the inclined angle of the seat-back frame by varying 

the height. All analyses were carried out using the 

ANSYS program. Constraint conditions for a 

running vehicle are as follows: a load of 30000 N 

in the Z+ direction, a force from the wheel in 

contact with the ground. Fig. 2 shows the fixed 

supports and loading directions for each model[9-10].

 (a) Model  1                             (b) Model  2

(c)  Model  3 

Fig. 1 Analysis models 

Table 1 Material properties of models

Intents Values

Compressive yield strength 250 MPa

Poisson’s ratio 0.3

Young’s modules 2× MPa

Tensile ultimate strength 460 MPa

Density 7850 kg/

Tensile yield strength 250 MPa

Table 2 Numbers of elements and nodes on models 

Model Nodes Elements

Model 1 51980 32230

Model 2 50016 30760

Model 3 50630 30949

3. Result

3.1 Structural Analysis
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(a) Fixed support at model 1    

(b) Loading condition at model 1  

(c) Fixed support at model 2    

(d) Loading condition at model 2

(e) Fixed support at model 3  

(f) Loading condition at model 3

Fig. 2 Constraint conditions for each model  
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(a) Model  1 

 (b)  Model  2

(c) Model 3

Fig. 3 Contours of total deformations at structural 

analysis

(a)  Model  1   

(b)  Model  2

(c) Model  3

Fig. 4 Contours of equivalent stresses at structural 

analysis  
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Figs. 3 and 4 show the contours of total 

deformations and equivalent stresses for each model. 

Assuming that a load of 30000 N was acting from 

the underside of the vehicle, the maximum 

deformations shown in Fig. 3 are 0.0057174 mm, 

0.0037303 mm, and 0.39439 mm for models 1, 2, 

and 3, respectively. The maximum equivalent 

stresses shown by Fig. 4 are 4.1591 MPa, 4.4266 

MPa and 19.316 MPa for models 1, 2, and 3, 

respectively. Among all models, model 1 exhibits 

the highest structural strength, while model 3 

exhibits the lowest structural strength. 

3.2 Vibration Analysis

In order to examine the natural frequency of the 

automotive seat, vibration analyses were carried out 

by applying a fixed support condition, as shown in 

Fig. 2. Tables 3, 4, and 5 show the maximum total 

deformations on the natural frequencies at modes 1, 

2, 3, 4, 5, and 6 for each model. All models 

exhibit maximum total deformation at mode 6. 

Models 1, 2, and 3 have maximum deformations of 

39.938 mm, 37.154 mm, and 34.661 mm, 

respectively. At the same time, the maximum natural 

frequencies vary from 800 Hz to 900 Hz for 

models 1, 2, and 3. Models 1, 2, and 3 have 

minimum natural frequencies of 96.92 Hz mm, 

86.406 Hz mm, and 60.196 Hz, respectively. 

Vibrations due to natural frequencies occur below 

1000 Hz for all models. Fig. 5 shows the amplitude 

stress which occurs in the harmonic vibration range 

from 0 Hz to 1000 Hz. Further, the peak amplitude 

stresses show the critical states for each model. At 

the maximum stress amplitude, models 1, 2, and 3 

have critical frequencies of 870 Hz, 790 Hz, and 60 

Hz, respectively. 

Figs. 6 and 7 show the contours of total 

deformations and equivalent stresses at the critical 

frequencies at models 1, 2, and 3. Models 1, 2, and 

3 exhibit maximum total deformations of 0.046694 

mm, 0.048122 mm and 7.7858 mm, respectively. 

Table 3 Maximum total deformations on natural 

frequencies by mode in case of model 1

Natural 
frequency(Hz)

Maximum total 
deformation(mm)

1'st mode 96.92 32.496

2'nd mode 204.86 26.796

3'rd mode 381.79 25.603

4'th mode 587.87 25.83

5'th mode 869.21 24.444

6'th mode 892.37 39.938

Table 4 Maximum total deformations on natural 

frequencies by mode in case of model 2

Natural 
frequency(Hz)

Maximum total 
deformation(mm)

1'st mode 86.406 29.936

2'nd mode 188.55 30.232

3'rd mode 320.04 25.187

4'th mode 589.2 24.052

5'th mode 785.81 22.039

6'th mode 826.94 37.154

Table 5 Maximum total deformations on natural 

frequencies by mode in case of model 3

Natural 
frequency(Hz)

Maximum total 
deformation(mm)

1'st mode 60.196 23.433

2'nd mode 159.48 35.292

3'rd mode 201.44 19.335

4'th mode 481.41 25.077

5'th mode 534.94 16.95

6'th mode 818.68 34.661

Models 1, 2, and 3 have maximum equivalent 

stresses of 56.18 MPa, 58.601 MPa, and 789.3 

MPa, respectively. Among the three models, model 

1 exhibits the strongest vibration durability, while, 

model 3 exhibits the weakest vibration durability.

4. Conclusion

In this study, structural and vibration analyses on 

three vehicle seat models with different shapes were
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(a) Model 1

(b) Model 2

(c) Model 3

Fig. 5 Frequency responses of amplitude stresses at 

models 1, 2 and 3  

(a) Model 1

(b) Model 2

(c) Model 3

Fig. 6 Total deformations at critical frequencies 
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(a) Model 1               

(b) Model 2

(c) Model 3

Fig. 7 Equivalent stresses at critical frequencies

carried out. The results are summarized as follows:

1. Among all models, model 1 exhibits the highest 

structural strength, while model 3 exhibits the 

lowest structural strength.

2. The maximum natural frequencies range from 800 

Hz to 900 Hz for models 1, 2, and 3. 

3. With a structural force of 3000 N, harmonic 

vibration occurred on the seat frame. Among all 

models, model 1 exhibits the strongest vibration 

durability, while model 3 exhibits the weakest 

vibration durability. 

4. The durability and stability of the automotive 

seat frame vary depending on the shape of the 

seat.
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