DOI QR코드

DOI QR Code

Biotransformation of Ginsenoside Rd from Red Ginseng Saponin using Commercial β-glucanase

상업용 β-glucanase를 이용한 홍삼유래 사포닌으로부터 Ginsnoside Rd 의 생물 전환

  • Kang, Hye Jung (Department of Engineering Chemistry, Chungbuk National University, College of Engineering) ;
  • Lee, Jong Woo (Department of Engineering Chemistry, Chungbuk National University, College of Engineering) ;
  • Park, Tae Woo (Department of Engineering Chemistry, Chungbuk National University, College of Engineering) ;
  • Park, Hye Yoon (National Institute of Biological Resources) ;
  • Park, Junseong (Department of Engineering Chemistry, Chungbuk National University, College of Engineering)
  • 강혜정 (충북대학교 공업화학과) ;
  • 이종우 (충북대학교 공업화학과) ;
  • 박태우 (충북대학교 공업화학과) ;
  • 박혜윤 (환경부 국립생물자원관) ;
  • 박준성 (충북대학교 공업화학과)
  • Received : 2020.09.06
  • Accepted : 2020.10.29
  • Published : 2020.12.30

Abstract

Bio-conversion manufacturing technology has been developed to produce ginsenoside Rd which is increasingly in demand as a cosmetic material due to various possibilities related to improving skin function. In order to convert ginsenoside Rb1 which is contained in red ginseng saponin (RGS) into Rd, several commercial enzymes were tested. Viscoflow MG was found to be the most efficient. In order to optimize the conversion of RGS to ginsenoside Rd by enzymatic transition was carried out using response surface methodology (RSM) based on Box-Behnken design (BBD). The main independent variables were RGS concentration, enzyme concentration, and reaction time. Conversion of ginsenoside Rd was performed under 17 conditions selected according to BBD model and optimization conditions were analyzed. The concentration of the converted ginsenoside Rd ranged from 0.3113 g/L to 0.5277 g/L, and the highest production volume was obtained under condition of reacting 2% RGS and 1.25% enzyme for 13.5 hours. Consequently, RGS concentration, enzyme concentration which is 0.05 less than p-value and among the interactions between the independent variables, the interaction between enzyme concentration and reaction time was confirmed to be the most influential.

최근 피부 기능 개선과 관련한 다양한 가능성으로 인해 화장품 소재로서 수요가 높아지고 있는 인삼 유래 사포닌의 한 종류인 ginsenoside Rd를 위한 생물 전환 제조 기술을 확립하였다. 홍삼 사포닌(RGS)에 포함된 ginsenoside Rb1을 Rd로 전환하기 위하여 상업용 효소를 탐색하였고 그 중 Viscoflow MG가 가장 효율적인 것을 확인하였다. Ginsenoside Rd로의 전환에 영향을 주는 요인을 최적화하기 위하여 반응표면분석법(RSM)을 통하여 실험 조건을 설계하였다. 주요 독립변수는 RGS 농도, 효소 농도와 반응 시간이었고 Box-Behnken design (BBD) 모델설계법에 따라 선정된 17 가지 조건으로 ginsenoside Rd로 전환을 수행하고 최적화 조건을 분석하였다. 전환된 Ginsenoside Rd의 농도는 0.3113 g/L에서 최대 0.5277 g/L까지였고 RGS 2%, 효소 1.25%를 13.5 h 반응시킨 조건에서 가장 높은 생성량을 보였다. 결론적으로, ginsenoside Rd 생물전환의 독립변수인 RGS 농도, 효소 농도는 p-value가 0.05보다 작은 값으로 유의미한 값을 나타내었고 각 독립변수 사이의 교호작용 중에서는 효소 농도와 반응 시간 사이의 교호 작용이 가장 큰 영향력을 갖고 있음을 확인하였다.

Keywords

References

  1. L. P. Christensen, Ginsenosides chemistry, biosynthesis, analysis, and potential health effects, Adv. Food Nutr. Res., 55, 1 (2009). https://doi.org/10.1016/S1043-4526(08)00401-4
  2. Y. S. Chang, E. K. Seo, C. Gyllenhaal and K. I. Block, Panax ginseng: A role in cancer therapy?, Integr. Cancer Ther., 2(1), 13 (2003). https://doi.org/10.1177/1534735403251167
  3. C. H. Lee and J. H. Kim, A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases, J. Ginseng Res., 38(3), 161 (2014). https://doi.org/10.1016/j.jgr.2014.03.001
  4. Z. T. Elma, E. Z. Ilian, and I. H. Christiana, Effect of ginsenoside Rg1 on insulin binding in mice liver and brain membranes, Phytotheraphy Res., 5(1), 46 (1991). https://doi.org/10.1002/ptr.2650050114
  5. Y. Yokozawa and H. Oura, Facilitation of protein biosynthesis by ginsenoside-Rb2 administration in diabetic rats, J. Natural Products, 53(6), 1514 (1990). https://doi.org/10.1021/np50072a018
  6. D. H. Jeong, M. Irfan, S. D. Kim, S. Kim, J. H. Oh, C. K. Park, H. K. Kim and M. H. Rhee, Ginsenoside Rg3-enriched red ginseng extract inhibits platelet activation and in vivo thrombus formation, J. Ginseng Res., 41(4), 548 (2017). https://doi.org/10.1016/j.jgr.2016.11.003
  7. C. S. Lee, G. B. Nam and J. S. Park, Protopanaxatriol inhibits melanin synthesis through inactivation of the pCREB-MITF-tyrosinase signalling pathway in melanocytes, Clinical and Experimental Dermatology, 44(3), 295 (2019). https://doi.org/10.1111/ced.13734
  8. C. S. Lee, G. B. Nam, I. H. Bae and J. S. Park, Whitening efficacy of ginsenoside F1 through inhibition of melanin transfer in cocultured human melanocytesekeratinocytes and three dimensional human skin equivalent, J. Ginseng Res. 43(2), 300 (2019). https://doi.org/10.1016/j.jgr.2017.12.005
  9. K. Y. Nam, The comparative understanding between red ginseng and white ginsengs process ginsengs (Panax ginseng C. A. Meyer), J. Ginseng Res. 29, 1 (2005). https://doi.org/10.5142/JGR.2005.29.1.001
  10. D. H. Kim, J. H. Chung, J. S. Yoon, Y. M. Ha, S. Bae, E. K. Lee, K. J. Jung, M. S. Kim, Y. J. Kim, M. K. Kim and H. Y. Chung, Ginsenoside Rd inhibits the expressions of iNOS and COX-2 by suppressing NFkappaB in LPS-stimulated RAW264.7 cells and mouse liver, J. Ginseng Res. 37(1), 54 (2013). https://doi.org/10.5142/jgr.2013.37.54
  11. W. K. Kim, S. Y. song, W. K. Oh, S. Kaewsuwan, T. L. Tien, W. S. Kim and J. H. Sung, Wound-healing effect of ginsenoside Rd from leaves of Panax ginseng via cyclic AMP-dependent protein kinase pathway, Eur. J. Pharmacol. 702(1-3), 285 (2013). https://doi.org/10.1016/j.ejphar.2013.01.048
  12. L. Zheng, J. J. Li, L. J. Gu, D. L. Zhang, Y. B. Wang and C. K. Sung, Ginsenosides Rb1 and Rd regulate proliferation of mature keratinocytes through induction of p63 expression in hair follicles, Phytother. Res. 27(7), 1095 (2013). https://doi.org/10.1002/ptr.4828
  13. S. J. Kim and C. S. Park, Production of compound K using ginsenosides from ginseng leaf by commercial enzyme, Korean J. Food Preserv. 26(6), 703 (2019). https://doi.org/10.11002/kjfp.2019.26.6.703
  14. Y. Wang, K. D. Choi, H. Yu, F. Jin and W. T. Im, Production of ginsenoside F1 using commercial enzyme cellulase KN, J. Ginseng Res. 40(2), 121 (2016). https://doi.org/10.1016/j.jgr.2015.06.003
  15. S. D. Ryu, M. G. Heo, and K. S. Yoon, Factors affecting physical properties of solid sunscreen using response surface methodology, J. Soc. Cosmet. Sci. Korea, 45(3), 237 (2019). https://doi.org/10.15230/SCSK.2019.45.3.237
  16. S. K. Kim, Y. S. Kwak, S. W. Kim, S. Y. Hwang, Y. S. Ko and C. M. Yoo, Improved method for the preparation of crude ginseng saponin. J. Ginseng Res., 22(3), 155 (1998).
  17. E. J. Kim, Y. S. Yi, Y. J. Son, S. Y. Han, D. H. Kim, G. Nam, M. A. Hossain, J. H. Kim, J. S. Park and J. Y. Cho, BIOGF1K, a compound K-rich fraction of ginseng, plays an antiinflammatory role by targeting an activator protein-1 signaling pathway in RAW264.7 macrophage-like cells, J. Ginseng Res., 42(2), 233 (2018). https://doi.org/10.1016/j.jgr.2018.02.001