DOI QR코드

DOI QR Code

Roles of Fisetin on Skin Barrier Function and Anti-aging in Epidermal Keratinocyte

각질형성세포에서 Fisetin의 피부장벽 기능 개선 및 항노화 효능 검증

  • Lee, Kyung-Ha (Department of Cosmetic Science and Technology, Daegu-Haany University) ;
  • Kim, Wanil (Department of Cosmetic Science and Technology, Daegu-Haany University)
  • 이경하 (대구한의대학교 화장품공학부) ;
  • 김완일 (대구한의대학교 화장품공학부)
  • Received : 2020.10.05
  • Accepted : 2020.12.11
  • Published : 2020.12.30

Abstract

Flavonoids are polyphenolic compounds derived from plants metabolites and are known to be capable of controlling various human physiological functions. Among them, fisetin (3,3', 3', 7-tetrahydroxyflavone) is found in various fruits and vegetables, and it has been recently known to restore the function of certain tissues through senolytic activity. In this study, targeting human epidermal keratinocytes, control of skin barrier genes and antioxidant efficacy of fisetin were analyzed. Fisetin increased the activity of telomerase and decreased the expression of CDKN1B. In addition, it increased the expression of KRT1, FLG, IVL, and DSP, which are main genes that make up the skin barrier. The fisetin also increased the expression of CerS3 and CerS4 genes, which are forms of ceramide synthases. These results show that the efficacy of fisetin is not limited as senolytics but is also involved in various physiological regulation of human keratinocytes. Therefore, we consider that fisetin could be used as an active ingredient in cosmetics and pharmaceuticals.

플라보노이드(flavonoid)는 식물 등의 대사체에서 유래한 폴리페놀 계열의 화합물이며, 다양한 인체생리작용을 조절할 수 있는 것으로 알려져 있다. 이중 3,3',3',7-tetrahydroxyflavone (fisetin)은 다양한 과일과 채소에서 발견되며, 최근 노쇠용해(senolytic) 활성을 통해 특정 조직의 기능을 회복시킨다는 것이 알려졌다. 본 연구에서는 인간 표피 각질세포를 대상으로 하여 fisetin의 피부장벽 유전자 발현 조절 및 항노화 효능을 분석하였다. Fisetin은 말단소립 역전사효소(telomerase)의 활성을 증가시켰으며, CDKN1B 유전자의 발현을 감소시켰다. 또한 피부장벽을 구성하는 주요 유전자인 KRT1, FLG, IVL, DSP의 발현을 증가시켰으며, 세라마이드 합성효소의 일종인 CerS3, CerS4 유전자의 발현을 증가시켰다. 이러한 결과는 fisetin의 효능이 노쇠용해에 국한되지 않고 인간 각질세포의 다양한 생리학적 조절에도 관여함을 보여준다. 따라서 fisetin은 화장품 및 의약품 등의 생리활성 조절물질로 활용될 수 있다고 사료된다.

Keywords

References

  1. A. Martins, H. Vieira, H. Gaspar, and S. Santos, Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success, Mar Drugs, 12(2), 1066 (2014). https://doi.org/10.3390/md12021066
  2. P. L. Gupta, M. Rajput, T. Oza, U. Trivedi, and G. Sanghvi, Eminence of microbial products in cosmetic industry, Nat Prod Bioprospect, 9(4), 267 (2019). https://doi.org/10.1007/s13659-019-0215-0
  3. N. Khan, D. N. Syed, N. Ahmad, and H. Mukhtar, Fisetin: a dietary antioxidant for health promotion, Antioxid Redox Signal, 19(2), 151 (2013). https://doi.org/10.1089/ars.2012.4901
  4. W. Li, L. Qin, R. Feng, G. Hu, H. Sun, Y. He, and R. Zhang, Emerging senolytic agents derived from natural products, Mech Ageing Dev, 181, 1 (2019). https://doi.org/10.1016/j.mad.2019.05.001
  5. Y. Arai, S. Watanabe, M. Kimira, K. Shimoi, R. Mochizuki, and N. Kinae, Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration, J Nutr, 130(9), 2243 (2000). https://doi.org/10.1093/jn/130.9.2243
  6. K. Sundarraj, A. Raghunath, and E. Perumal, A review on the chemotherapeutic potential of fisetin: In vitro evidences, Biomed Pharmacother, 97, 928 (2018). https://doi.org/10.1016/j.biopha.2017.10.164
  7. Y. Zhu, E. J. Doornebal, T. Pirtskhalava, N. Giorgadze, M. Wentworth, H. Fuhrmann-Stroissnigg, L. J. Niedernhofer, P. D. Robbins, T. Tchkonia, and J. L. Kirkland, New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463, Aging (Albany NY), 9(3), 955 (2017). https://doi.org/10.18632/aging.101202
  8. K. Ishige, D. Schubert, and Y. Sagara, Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms, Free Radic Biol Med, 30(4), 433 (2001). https://doi.org/10.1016/S0891-5849(00)00498-6
  9. Z. S. Markovic, S. V. Mentus, and J. M. Dimitric Markovic, Electrochemical and density functional theory study on the reactivity of fisetin and its radicals: implications on in vitro antioxidant activity, J Phys Chem A, 113(51), 14170 (2009). https://doi.org/10.1021/jp907071v
  10. Y. S. Touil, J. Seguin, D. Scherman, and G. G. Chabot, Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinomabearing mice, Cancer Chemother Pharmacol, 68(2), 445 (2011). https://doi.org/10.1007/s00280-010-1505-8
  11. N. Ravichandran, G. Suresh, B. Ramesh, and G. V. Siva, Fisetin, a novel flavonol attenuates benzo(a) pyrene-induced lung carcinogenesis in Swiss albino mice, Food Chem Toxicol, 49(5), 1141 (2011). https://doi.org/10.1016/j.fct.2011.02.005
  12. N. Khan, M. Asim, F. Afaq, M. Abu Zaid, and H. Mukhtar, A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice, Cancer Res, 68(20), 8555 (2008). https://doi.org/10.1158/0008-5472.CAN-08-0240
  13. P. Maher, T. Akaishi, and K. Abe, Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory, Proc Natl Acad Sci U S A, 103(44), 16568 (2006). https://doi.org/10.1073/pnas.0607822103
  14. Y. Sagara, J. Vanhnasy, and P. Maher, Induction of PC12 cell differentiation by flavonoids is dependent upon extracellular signal-regulated kinase activation, J Neurochem, 90(5), 1144 (2004). https://doi.org/10.1111/j.1471-4159.2004.02563.x
  15. M. S. Shon, R. H. Kim, O. J. Kwon, S. S. Roh, and G. N. Kim, Beneficial role and function of fisetin in skin health via regulation of the CCN2/TGF-beta signaling pathway, Food Sci Biotechnol, 25(Suppl 1), 133 (2016). https://doi.org/10.1007/s10068-016-0110-y
  16. M. Kimira, Y. Arai, K. Shimoi, and S. Watanabe, Japanese intake of flavonoids and isoflavonoids from foods, J Epidemiol, 8(3), 168 (1998). https://doi.org/10.2188/jea.8.168
  17. H. C. Pal, R. D. Baxter, K. M. Hunt, J. Agarwal, C. A. Elmets, M. Athar, and F. Afaq, Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells, Oncotarget, 6(29), 28296 (2015). https://doi.org/10.18632/oncotarget.5064
  18. A. Sabarwal, R. Agarwal, and R. P. Singh, Fisetin inhibits cellular proliferation and induces mitochondriadependent apoptosis in human gastric cancer cells, Mol Carcinog, 56(2), 499 (2017). https://doi.org/10.1002/mc.22512
  19. W. Kim and J. W. Shay, Long-range telomere regulation of gene expression: Telomere looping and telomere position effect over long distances (TPE-OLD), Differentiation, 99, 1 (2018). https://doi.org/10.1016/j.diff.2017.11.005
  20. I. Flores, M. L. Cayuela, and M. A. Blasco, Effects of telomerase and telomere length on epidermal stem cell behavior, Science, 309(5738), 1253 (2005). https://doi.org/10.1126/science.1115025
  21. N. Liu, Y. Yin, H. Wang, Z. Zhou, X. Sheng, H. Fu, R. Guo, H. Wang, J. Yang, P. Gong, W. Ning, Z. Ju, Y. Liu, and L. Liu, Telomere dysfunction impairs epidermal stem cell specification and differentiation by disrupting BMP/pSmad/P63 signaling, PLoS Genet, 15(9), e1008368 (2019). https://doi.org/10.1371/journal.pgen.1008368
  22. A. L. Gartel and S. K. Radhakrishnan, Lost in transcription: p21 repression, mechanisms, and consequences, Cancer Res, 65(10), 3980 (2005). https://doi.org/10.1158/0008-5472.CAN-04-3995
  23. I. M. Chu, L. Hengst, and J. M. Slingerland, The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy, Nat Rev Cancer, 8(4), 253 (2008). https://doi.org/10.1038/nrc2347
  24. T. Tsutsui, B. Hesabi, D. S. Moons, P. P. Pandolfi, K. S. Hansel, A. Koff, and H. Kiyokawa, Targeted disruption of CDK4 delays cell cycle entry with enhanced p27(Kip1) activity, Mol Cell Biol, 19(10), 7011 (1999). https://doi.org/10.1128/mcb.19.10.7011
  25. N. Khan, F. Afaq, F. H. Khusro, V. Mustafa Adhami, Y. Suh, and H. Mukhtar, Dual inhibition of phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin signaling in human nonsmall cell lung cancer cells by a dietary flavonoid fisetin, Int J Cancer, 130(7), 1695 (2012). https://doi.org/10.1002/ijc.26178
  26. X. Lu, J. Jung, H. J. Cho, D. Y. Lim, H. S. Lee, H. S. Chun, D. Y. Kwon, and J. H. Park, Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells, J Nutr, 135(12), 2884 (2005). https://doi.org/10.1093/jn/135.12.2884
  27. R. A. Hiipakka, H. Z. Zhang, W. Dai, Q. Dai, and S. Liao, Structure-activity relationships for inhibition of human 5alpha-reductases by polyphenols, Biochem Pharmacol, 63(6), 1165 (2002). https://doi.org/10.1016/S0006-2952(02)00848-1
  28. A. Q. Haddad, V. Venkateswaran, L. Viswanathan, S. J. Teahan, N. E. Fleshner and L. H. Klotz, Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines, Prostate Cancer Prostatic Dis, 9(1), 68 (2006). https://doi.org/10.1038/sj.pcan.4500845
  29. I. Murtaza, V. M. Adhami, B. B. Hafeez, M. Saleem, and H. Mukhtar, Fisetin, a natural flavonoid, targets chemoresistant human pancreatic cancer AsPC-1 cells through DR3-mediated inh,ibition of NF-kappaB, Int J Cancer, 125(10), 2465 (2009). https://doi.org/10.1002/ijc.24628
  30. D. N. Syed, F. Afaq, N. Maddodi, J. J. Johnson, S. Sarfaraz, A. Ahmad, V. Setaluri, and H. Mukhtar, Inhibition of human melanoma cell growth by the dietary flavonoid fisetin is associated with disruption of Wnt/beta-catenin signaling and decreased Mitf levels, J Invest Dermatol, 131(6), 1291 (2011). https://doi.org/10.1038/jid.2011.6
  31. A. L. Slusher, J. J. Kim, and A. T. Ludlow, The Role of Alternative RNA Splicing in the Regulation of hTERT, Telomerase, and Telomeres: Implications for Cancer Therapeutics, Cancers (Basel), 12(6), (2020).
  32. J. W. Shay and W. E. Wright, Telomeres and telomerase in normal and cancer stem cells, FEBS Lett, 584(17), 3819 (2010). https://doi.org/10.1016/j.febslet.2010.05.026
  33. C. B. Harley, Telomerase is not an oncogene, Oncogene, 21(4), 494 (2002). https://doi.org/10.1038/sj.onc.1205076
  34. J. W. Shay and W. E. Wright, Senescence and immortalization: role of telomeres and telomerase, Carcinogenesis, 26(5), 867 (2005). https://doi.org/10.1093/carcin/bgh296
  35. P. M. Elias, Skin barrier function, Curr Allergy Asthma Rep, 8(4), 299 (2008). https://doi.org/10.1007/s11882-008-0048-0
  36. I. R. Scott and C. R. Harding, Filaggrin breakdown to water binding compounds during development of the rat stratum corneum is controlled by the water activity of the environment, Dev Biol, 115(1), 84 (1986). https://doi.org/10.1016/0012-1606(86)90230-7
  37. C. N. Palmer, A. D. Irvine, A. Terron-Kwiatkowski, Y. Zhao, H. Liao, S. P. Lee, D. R. Goudie, A. Sandilands, L. E. Campbell, F. J. Smith, G. M. O'Regan, R. M. Watson, J. E. Cecil, S. J. Bale, J. G. Compton, J. J. DiGiovanna, P. Fleckman, S. Lewis-Jones, G. Arseculeratne, A. Sergeant, C. S. Munro, B. El Houate, K. McElreavey, L. B. Halkjaer, H. Bisgaard, S. Mukhopadhyay, and W. H. McLean, Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis, Nat Genet, 38(4), 441 (2006). https://doi.org/10.1038/ng1767
  38. B. E. Kim, D. Y. Leung, M. Boguniewicz, and M. D. Howell, Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6, Clin Immunol, 126(3), 332 (2008). https://doi.org/10.1016/j.clim.2007.11.006
  39. Z. Nemes, L. N. Marekov, L. Fesus, and P. M. Steinert, A novel function for transglutaminase 1: attachment of long-chain omega-hydroxyceramides to involucrin by ester bond formation, Proc Natl Acad Sci U S A, 96(15), 8402 (1999). https://doi.org/10.1073/pnas.96.15.8402
  40. L. Polivka, S. Hadj-Rabia, E. Bal, S. Leclerc-Mercier, M. Madrange, Y. Hamel, D. Bonnet, S. Mallet, H. Lepidi, C. Ovaert, P. Barbet, C. Dupont, B. Neven, A. Munnich, L. M. Godsel, F. Campeotto, R. Weil, E. Laplantine, S. Marchetto, J. P. Borg, W. I. Weis, J. L. Casanova, A. Puel, K. J. Green, C. Bodemer, and A. Smahi, Epithelial barrier dysfunction in desmoglein-1 deficiency, J Allergy Clin Immunol, 142(2), 702 (2018). https://doi.org/10.1016/j.jaci.2018.04.007
  41. G. Mocsai, K. Gaspar, G. Nagy, B. Irinyi, A. Kapitany, T. Biro, E. Gyimesi, B. Toth, L. Marodi, and A. Szegedi, Severe skin inflammation and filaggrin mutation similarly alter the skin barrier in patients with atopic dermatitis, Br J Dermatol, 170(3), 617 (2014). https://doi.org/10.1111/bjd.12743
  42. H. Green and P. Djian, Consecutive actions of different gene-altering mechanisms in the evolution of involucrin, Mol Biol Evol, 9(6), 977 (1992).
  43. D. Garrod and M. Chidgey, Desmosome structure, composition and function, Biochim Biophys Acta, 1778(3), 572 (2008). https://doi.org/10.1016/j.bbamem.2007.07.014
  44. R. L. Eckert, M. T. Sturniolo, A. M. Broome, M. Ruse and E. A. Rorke, Transglutaminase function in epidermis, J Invest Dermatol, 124(3), 481 (2005). https://doi.org/10.1111/j.0022-202X.2005.23627.x
  45. D. Davis, M. Kannan and B. Wattenberg, Orm/ORMDL proteins: Gate guardians and master regulators, Adv Biol Regul, 70, 3 (2018). https://doi.org/10.1016/j.jbior.2018.08.002
  46. L. Coderch, O. Lopez, A. de la Maza and J. L. Parra, Ceramides and skin function, Am J Clin Dermatol, 4(2), 107 (2003). https://doi.org/10.2165/00128071-200304020-00004
  47. M. Rabionet, K. Gorgas and R. Sandhoff, Ceramide synthesis in the epidermis, Biochim Biophys Acta, 1841(3), 422 (2014). https://doi.org/10.1016/j.bbalip.2013.08.011
  48. M. Levy and A. H. Futerman, Mammalian ceramide synthases, IUBMB Life, 62(5), 347 (2010).
  49. H. J. Cha, C. He, H. Zhao, Y. Dong, I. S. An and S. An, Intercellular and intracellular functions of ceramides and their metabolites in skin (Review), Int J Mol Med, 38(1), 16 (2016). https://doi.org/10.3892/ijmm.2016.2600