Korean J. Math. **28** (2020), No. 4, pp. 775–789 http://dx.doi.org/10.11568/kjm.2020.28.4.775

e-FUZZY FILTERS OF STONE ALMOST DISTRIBUTIVE LATTICES

Yohannes Gedamu Wondifraw and Teferi Getachew Alemayehu

ABSTRACT. In this paper the concept of e-fuzzy filters is introduced in a Stone Almost Distributive Lattice. Several properties are derived on e-fuzzy filters with the help of maximal fuzzy filters. It is proved that the set of all e-fuzzy filters forms a complete distributive lattice.

1. Introduction

U. M. Swamy and G. C. Rao [9] introduced the notion of an Almost Distributive Lattice (ADL). An ADL $(A, \land, \lor, 0)$ satisfies all the axioms of distributive lattice, except possibly the commutativity of the operations \land and \lor . It is known that, in any ADL the commutativity of \lor is equivalent to that of \land and also to the right distributivity of \lor over \land . U.M. Swamy, G.C. Rao, and G. Nanaji Rao [10] introduced pseudo-complementation on almost distributive lattices. U.M. Swamy, G.C. Rao, and G. Nanaji Rao [11] studied Stone Almost Distributive Lattices. In addition to this N. Rafi, Ravi Kumar Bandaru and G.C. Rao [6] studided *e*-filters in Stone Almost Distributive Lattices. On the other hand, fuzzy set theory was introduced by Zadeh [15]. Next, fuzzy groups were studied by Rosenfield [7]. Many scholars have used this idea

Received June 24, 2020. Revised September 17, 2020. Accepted September 28, 2020.

²⁰¹⁰ Mathematics Subject Classification: 06D99, 06D05, 06D30.

Key words and phrases: ADL, Stone ADL, *e*-fuzzy filters, , prime *e*-fuzzy filters, maximal *e*-fuzzy filters.

[©] The Kangwon-Kyungki Mathematical Society, 2020.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

to different mathematical branches such as semi-group, ring, semi-ring, near-ring, lattice etc. For instance Yuan and Wu [14] introduced the notion of fuzzy sublattice and fuzzy ideals of lattice, Swamy and Raju [8] fuzzy ideals and congruences of lattices, Kumar [5], topologized the set of all fuzzy prime ideals of a commutative ring with unity and studied some properties of the space, Kumar [5], studied about the space of prime fuzzy ideals of a ring in different way and Hadji-Abadi and Zahedi [3] extended the result of Kumar.

More recently, U. M. Swamy et al. [12] Introduced fuzzy ideals of ADLs. In addition to this B. A. Alaba and G. M. Addis [1] studied fuzzy congruence relations on almost distributive lattices. U. M. Swamy et al. [13] studied L-Fuzzy Filters of Almost Distributive Lattices. B. A. Alaba and T.G. Alemayehu [2] introduce *e*-fuzzy filters of MS-algebras.

In this article our aim is to present *e*-fuzzy filters of a Stone Almost Distributive Lattice.

2. PRELIMINARIES

In this section, we recall basic definitions and results which will be used in this article. For further detail on e-filters of a Stone ADL, we refer to [6].

DEFINITION 2.1. [9] An algebra $L = (L, \lor, \land, 0)$ of type (2, 2, 0) is called an Almost Distributive Lattice (abbreviated as ADL), if it satisfies the following conditions for all a, b and $c \in L$:

1. $0 \wedge a = 0$, 2. $a \vee 0 = a$, 3. $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$, 4. $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$, 5. $(a \vee b) \wedge c = (a \wedge c) \vee (b \wedge c)$, 6. $(a \vee b) \wedge b = b$.

[9] Every nonempty set X can be regarded as an ADL as follows. Let $x_0 \in X$. Define the binary operations \lor, \land on X by

$$x \lor y = \begin{cases} x & if \ x \neq x_0 \\ y & if x = x_0 \end{cases}$$

$$x \wedge y = \begin{cases} x & if \ y \neq x_0 \\ x_0 & if x = x_0 \end{cases}$$

Then (X, \lor, \land, x_0) is an ADL (where x_0 is the zero) and is called a discrete ADL.

If $(L, \lor, \land, 0)$ is an ADL, for any $a, b \in L$, define $a \leq b$ if and only if $a = a \land b$ (or equivalently, $a \lor b = b$), then \leq is a partial ordering on L.

DEFINITION 2.2. [9] If $(L, \lor, \land, 0)$ is an ADL, for any $a, b, c \in L$, we have the following: 1. $a \lor b = a \Leftrightarrow a \land b = b$, 2. $a \lor b = b \Leftrightarrow a \land b = a$, 3. \land is associative in L, 4. $a \land b \land c = b \land a \land c$, 5. $(a \lor b) \land c = (b \lor a) \land c$ 6. $a \land b = 0 \Leftrightarrow b \land a = 0$, 7. $a \lor (b \land c) = (a \lor b) \land (a \lor c)$, 8. $a \land (a \lor b) = a$, $(a \land b) \lor b = b$ and $a \lor (b \land a) = a$, 9. $a \le a \lor b$ and $a \land b \le b$, 10. $a \land a = a$ and $a \lor a = a$, 11. $0 \lor a = a$ and $a \land 0 = 0$, 12. If $a \le c, b \le c$ then $a \land b = b \land a$ and $a \lor b = b \lor a$,

It can be observed that an ADL L satisfies almost all the properties of a distributive lattice except the right distributivity of \lor over \land , commutativity of \lor , commutativity of \land . Any one of these properties make an ADL L a distributive lattice.

As usual, an element $m \in L$ is called maximal if it is a maximal element in the partially ordered set (L, \leq) . That is, for any $a \in L, m \leq a \Rightarrow m = a$.

THEOREM 2.3. [9] Let L be an ADL and $m \in L$. Then the following are equivalent:

- 1. *m* is maximal with respect to \leq ,
- 2. $m \lor a = m$, for all $a \in L$,

•

3. $m \wedge a = a$, for all $a \in L$,

4. $a \lor m$ is maximal, for all $a \in L$.

As in distributive lattices [9], a non-empty subset I of an ADL L is called an ideal of L if $a \lor b \in I$ and $a \land x \in I$ for any $a, b \in I$ and $x \in L$.

Also, a non-empty subset F of L is said to be a filter of L if $a \wedge b \in F$ and $x \vee a \in F$ for $a, b \in F$ and $x \in L$. The set I(L) of all ideals of L is a bounded distributive lattice with least element $\{0\}$ and greatest element L under set inclusion in which, for any $I, J \in I(L), I \cap J$ is the infimum of I and J while the supremum is given by $I \vee J = \{a \vee b : a \in I, b \in J\}$. A proper ideal P of L is called a prime ideal if, for any $x, y \in L, x \wedge y \in$ $P \Rightarrow x \in P$ or $y \in P$. A proper ideal M of L is said to be maximal if it is not properly contained in any proper ideal of L. It can be observed that every maximal ideal of L is a prime ideal. Every proper ideal of Lis contained in a maximal ideal.

For any $A \subseteq L$, $Ann\{A\} = \{x \in L : a \land x = 0 \text{ for all } a \in A\}$ is an ideal of L. We write $Ann\{(a)\}$ for $Ann\{a\}$. Then clearly $Ann\{(0)\} = L$ and $Ann\{L\} = (0]$.

DEFINITION 2.4. [6] Let L be an ADL and $x \in L$. Then define $Ann\{x\} = \{y \in L : x \land y = 0\}$. Clearly, $Ann\{x\}$ is an ideal in L and hence an annihilator ideal.

DEFINITION 2.5. [10] Let $(L, \lor, \land, 0)$ be an ADL. Then a unary operation $a \mapsto a^*$ on L is called a pseudo-complementation on L if, for any $a, b \in L$, it satisfies the following conditions:

- 1. $a \wedge b = 0 \Rightarrow a^* \wedge b = b$,
- 2. $a \wedge a^* = 0$,

3.
$$(a \lor b)^* = a^* \land b^*$$
,

Then $(L, \lor, \land, *, 0)$ is called a pseudo-complemented ADL.

Here, the unary operation * is called a pseudo-complementation on L and a^* is called a pseudo-complement of a in L. An element a of a pseudo-complemented ADL L is called a dense element if $a^* = 0$.

Let us denote the set of all dense elements of L by D.

Now we list some results of pseudo-complementation.

THEOREM 2.6. [10] Let L be an ADL and * be a pseudo-complementation on L. Then, for any $a, b \in L$, we have the following:

1. 0^* is amaximal, 2. If a is maximal, then $a^* = 0$, 3. $0^{**} = 0$, 4. $a^{**} \wedge a = a$, 5. $a^{***} = a^*$, 6. $a \le b \Rightarrow b^* \le a^*$, 7. $a^* \wedge b^* = b^* \wedge a^*$, 8. $(a \wedge b)^{**} = a^{**} \wedge b^{**}$.

DEFINITION 2.7. [11] Let L be an ADL and * a pseudo-complementation on L. Then L is called Stone ADL if, for any $x \in L$, $x^* \vee x^{**} = 0^*$.

LEMMA 2.8. [11] Let L be a Stone ADL and $a, b \in L$. Then $(a \wedge b)^* = a^* \vee b^*$

DEFINITION 2.9. [6] For any filter F of a Stone ADL L, define an extension of F as the set $F^e = \{x \in L/x^* \in Ann\{a\} \text{ for some } a \in F\}$

DEFINITION 2.10. [6] A filter F of a Stone ADL L is called an e-filter of L if $F = F^e$

Remember that, for any set S a function $\mu : S \longrightarrow ([0,1], \wedge, \vee)$ is called a fuzzy subset of S, where [0,1] is a unit interval, $\alpha \wedge \beta = \min\{\alpha,\beta\}$ and $\alpha \vee \beta = \max\{\alpha,\beta\}$ for all $\alpha, \beta \in [0,1]$.

DEFINITION 2.11. [13] Let λ be a fuzzy subset of an ADL L. For any $\alpha \in [0, 1]$, we denote the level subset λ_{α} , i.e

$$\lambda_{\alpha} = \{ x \in L : \alpha \le \lambda(x) \}.$$

U.M. Swamy et.al [13] $\mu : L \longrightarrow L'$, where L is an ADL and L' is a complete lattice satisfing infinate meet distiributive law. Now in our cases take L' as [0, 1].

 λ is said to be a fuzzy filter of an ADL L if λ_{α} is a filter of L for all $\alpha \in L$.

THEOREM 2.12. [13]

Let λ be a fuzzy subset of an ADL L. Then the following are equivalent to each other.

- 1. λ is a fuzzy filter of L,
- 2. $\lambda(m) = 1$ for all maximal element m and $\lambda(x \wedge y) = \lambda(x) \wedge \lambda(y)$, for all $x, y \in L$,
- 3. $\lambda(m) = 1$ for all maximal element m and $\lambda(x \lor y) \ge \lambda(x) \lor \lambda(y)$ and $\lambda(x \land y) \ge \lambda(x) \land \lambda(y)$, for all $x, y \in L$.

We define the binary operations "+" and "." on all fuzzy subsets of an ADL L as: $(\mu + \theta)(x) = \sup\{\mu(a) \land \theta(b) : a, b \in L, a \lor b = x\}$ and $(\mu.\theta)(x) = \sup\{\mu(a) \land \theta(b) : a, b \in L, a \land b = x\}.$

The intersection of fuzzy filters of L is a fuzzy filter. However the union of fuzzy filters may not be fuzzy filter. The least upper bound of a fuzzy filters μ and θ of L is denoted as $\mu \lor \theta = \bigcap \{ \sigma \in FF(L) : \mu \cup \theta \subseteq \sigma \}$.

If μ and θ are fuzzy filters of L, then $\mu.\theta = \mu \lor \theta$ and $\mu + \theta = \mu \cap \theta$

In the next sections L stands for a Stone ADL unless otherwise mentioned.

3. *e*-Fuzzy Filters of Stone Almost Distributive Lattices

In [6], N. Rafi, Ravi Kumar Bandaru and G.C. Rao introduced the concept of e-filters in Stone ADL and studied their properties. In this paper, we extend this concept to e-fuzzy filters of a Stone ADL. Some basic properties of e-fuzzy filters are observed in terms of maximal fuzzy filters. We proved that every maximal fuzzy filter of Stone ADL is always an e-fuzzy filter and also observed that every minimal prime fuzzy filter containing a given e-fuzzy filter is an e-fuzzy filter.

DEFINITION 3.1. For any fuzzy filter λ of a Stone ADL L, define an extension of λ as the fuzzy subset $\lambda^e(x) = \sup\{\lambda(a) : x^* \land a = 0, a \in L\}$ for all $x \in L$.

The following Lemma reveals some basic properties of λ^e

LEMMA 3.2. Let L be a Stone ADL. For any two fuzzy filters λ and ν of L, the following holds true.

(1) λ^e is a fuzzy filter of *L*, (2) $\lambda \subseteq \lambda^e$, (3) $\lambda \subseteq \nu \Rightarrow \lambda^e \subseteq \nu^e$, (4) $(\lambda \cap \nu)^e = \lambda^e \cap \nu^e$, (5) $(\lambda^e)^e = \lambda^e$.

Proof. For any elements $x, y, a, b \in L$ and for any maximal element L,

(1) $\lambda^e(m) = \sup\{\lambda(a) : m^* \land a = 0, a \in L\} \ge \lambda(m) = 1$. Hence $\lambda^e(m) = 1$.

e-Fuzzy Filters of Stone Almost Distributive Lattices

Next,

$$\begin{split} \lambda^{e}(x) \lor \lambda^{e}(y) &= \sup\{\lambda(a) : x^{*} \land a = 0, \ a \in L\} \lor \sup\{\lambda(b) : y^{*} \land b = 0, \ b \in L\} \\ &= \sup\{\lambda(a) \lor \lambda(b) : x^{*} \land a = 0, \ y^{*} \land b = 0, \ a, \ b \in L\} \\ &\leq \sup\{\lambda(a \lor b) : (x \lor y)^{*} \land (a \lor b) = 0\} \\ &= \lambda^{e}(x \lor y) \end{split}$$

and

$$\begin{split} \lambda^{e}(x) \wedge \lambda^{e}(y) &= \sup\{\lambda(a) : x^{*} \wedge a = 0, \ a \in L\} \wedge \sup\{\lambda(b) : y^{*} \wedge b = 0, \ b \in L\} \\ &= \sup\{\lambda(a) \wedge \lambda(b) : x^{*} \wedge a = 0, \ y^{*} \wedge b = 0, \ a, \ b \in L\} \\ &\leq \sup\{\lambda(a \wedge b) : (x \wedge y)^{*} \wedge (a \wedge b) = 0, \ a, b \in L\} \\ &= \lambda^{e}(x \wedge y) \end{split}$$

Thus λ^e is a fuzzy filter of L. (2) $\lambda^e(x) = \sup\{\lambda(a) : x^* \land a = 0\} \ge \lambda(x)$. Hence $\lambda \subseteq \lambda^e$. (3) Suppose that $\lambda \subseteq \nu$, then $\nu^e(x) = \sup\{\nu(a) : x^* \land a = 0, \ a \in L\} \ge \sup\{\lambda(a) : x^* \land a = 0, \ a \in L\} = \lambda^e(x)$. Hence $\lambda^e \subseteq \nu^e$ (4) By (3) $(\lambda \cap \nu)^e \subseteq \lambda^e \cap \nu^e$. Conversely, $(\lambda^e \cap \nu^e)(x) = \lambda^e(x) \land \nu^e(x)$ $= \sup\{\lambda(a) \le \nu^e(x)$ $= \sup\{\lambda(a) \land \nu(b) : x^* \land a = 0, \ a \in L\} \land \sup\{\nu(b) : x^* \land b = 0, \ b \in L\}$ $= \sup\{\lambda(a) \land \nu(b) : x^* \land a = 0, \ x^* \land b = 0, \ a, b \in L\}$ $\leq \sup\{\lambda(a \lor b) \land \nu(a \lor b) : x^* \land (a \lor b) = 0, \ a, b \in L\}$ $= \sup\{(\lambda \cap \nu)(a \lor b) : x^* \land (a \lor b) = 0, \ a, b \in L\}$ $= \sup\{(\lambda \cap \nu)^e(x)$ Hence $(\lambda^e \cap \nu^e) = (\lambda \cap \nu)^e$.

(5) If $x^* \wedge a = 0$ and $a^* \wedge z = 0$, then $a^* \wedge x^* = x^*$ and also we have $x^* \wedge z = a^* \wedge x^* \wedge z = x^* \wedge a^* \wedge z = x^* \wedge 0 = 0$

$$\begin{array}{lll} (\lambda^{e})^{e}(x) &=& \sup\{\lambda^{e}(a): x^{*} \wedge a = 0, \ a \in L\} \\ &=& \sup\{\sup\{\lambda(z): a^{*} \wedge z = 0, \ z \in L\}: x^{*} \wedge a = 0, \ a, x \in L\} \\ &\leq& \sup\{\lambda(z): x^{*} \wedge z = 0, \ z \in L\} \\ &=& \lambda^{e}(x) \end{array}$$

Clearly $\lambda^e \subseteq (\lambda^e)^e$. Hence $(\lambda^e)^e = \lambda^e$.

Now we define e-fuzzy filter in Stone ADL L.

DEFINITION 3.3. A fuzzy filter λ of a Stone ADL L is called an e-fuzzy filter of L if $\lambda = \lambda^e$.

THEOREM 3.4. λ is an *e*-fuzzy filter of a Stone ADL L if and only if λ_{α} is an *e*-filter of L, for all $\alpha \in [0, 1]$.

COROLLARY 3.5. F is an e-filter of a Stone ADL L if and only if χ_F is an e-fuzzy filter of L.

LEMMA 3.6. Let D be the set of all dense elements of L. Then χ_D is the smallest e-fuzzy filter.

Proof. Since D is an e-fuzzy filter of L. By Corrollary 3.5 χ_D is an e-fuzzy filter of L. Suppose λ is any e-fuzzy filter of L. If $\chi_D(x) = 1$. This implies $x^* = 0$. Now $\lambda(x) = \sup\{\lambda(a) : x^* \land a = 0, a \in L\} \ge \lambda(m) = 1$, for any maximal element m. Since $x^* \land m = 0$. In this case $\chi_D(x) \le \lambda(x)$. If $\chi_D(x) = 0$, then $\chi_D(x) = 0 \le \lambda(x)$. This implies $\chi_D(x) \le \lambda(x)$ for all $x \in L$. Hence χ_D is the smallest e-fuzzy filter of L. \Box

In Lemma 3.2(4), we can mention that the intersection of two *e*-fuzzy filters of a Stone ADL L is an *e*-fuzzy filter. But the union of two *e*-fuzzy filters may not be an *e*-fuzzy filter.

COROLLARY 3.7. Let $\{\lambda_i : i \in \Omega\}$ be a family of *e*-fuzzy filters of a Stone ADL L. Then $\bigcap_{i \in \Omega} \lambda_i$ is an *e*-fuzzy filter of L.

We denote the class of all *e*-fuzzy filters of a Stone ADL L by $\mathcal{FF}^{e}(L)$

THEOREM 3.8. Let L be a Stone ADL L. Then the class $\mathcal{FF}^{e}(L)$ of all e-fuzzy filters forms a complete distributive lattice with relation \subseteq .

Proof. Since $\chi_D, \chi_L \in \mathcal{FF}^e(L), \mathcal{FF}^e(L) \neq \emptyset$. Clearly $(\mathcal{FF}^e(L), \subseteq)$ is a partially order set. Now for any $\lambda, \sigma \in \mathcal{FF}^e(L)$, define $\lambda \wedge \sigma = \lambda \cap \sigma$ and $\lambda \cup \sigma = (\lambda \lor \sigma)^e$, where $(\lambda \lor \sigma)^e(x) = \sup\{\lambda(a) \land \lambda(b) : x^* \land (a \land b) =$ $0, a, b \in L\} \forall x \in L$. It can be easily verified that $\lambda \cap \sigma, (\mu \lor \sigma)^e \in$ $\mathcal{FF}^e(L)$ and $\lambda \cap \sigma$ is the greatest lower bound of λ and σ . We prove that $\lambda \cup \sigma$ is the least upper bound of λ and σ . Since $\lambda, \sigma \subseteq \lambda \lor \sigma \subseteq (\lambda \lor \sigma)^e$, $(\lambda \lor \sigma)^e$ is an upper bound of λ and σ . Let γ be any *e*-fuzzy filter of *L* such that $\lambda \subseteq \gamma$ and $\sigma \subseteq \gamma$.

$$\begin{aligned} (\lambda \lor \sigma)^e(x) &= Sup\{\lambda(a) \land \lambda(b) : x^* \land (a \land b) = 0 ; a, b \in L\} \\ &\leq Sup\{\gamma(a) \land \gamma(b) : x^* \land (a \land b) = 0, a, b \in L\} \\ &= Sup\{\gamma(a \land b) : x^* \land (a \land b) = 0, a, b \in L\} \\ &= \gamma^e(x) = \gamma(x) \end{aligned}$$

Hence $(\lambda \vee \sigma)^e = \sup\{\lambda, \sigma\}$. Thus $(\mathcal{FF}^e(L), \subseteq)$ is a lattice. Since χ_D and χ_L are the smallest and the greatest *e*-fuzzy filters of $\mathcal{FF}^e(L)$, $(\mathcal{FF}^e(L), \cap, \cup, \chi_D, \chi_L)$ is a bounded lattice. By Corollary 3.8 any subfamily of *e*-fuzzy filters of $\mathcal{FF}^e(L)$ has infimum in $\mathcal{FF}^e(L)$ and $\mathcal{FF}^e(L)$ has greatest element. Hence $(\mathcal{FF}^e(L), \cap, \cup, \chi_D, \chi_L)$ is a complete bounded lattice. For any λ, σ and $\theta \in \mathcal{FF}^e(L)$, we have $(\lambda \cup \sigma) \cap (\lambda \cup \theta) = (\lambda \vee \sigma)^e \cap (\lambda \vee \theta)^e = ((\lambda \vee \sigma) \cap (\lambda \vee \theta))^e = (\lambda \vee (\sigma \cap \theta))^e = \lambda \cup (\sigma \cap \theta)$. Therefore $(\mathcal{FF}^e(L), \cap, \cup, \chi_D, \chi_L)$ is a bounded and complete distributive lattice.

In the following, we characterize the *e*-fuzzy filters

THEOREM 3.9. Let λ be a fuzzy filter of a Stone ADL L. Then, the following are equivalent.

(1) λ is an *e*-fuzzy filter,

(2)
$$\lambda(x) = \lambda(x^{**}),$$

(3) For $x, y \in L$, $x^* = y^*$ implies $\lambda(x) = \lambda(y)$.

Proof. (1) \Rightarrow (2). Suppose that λ is an *e*-fuzzy filter of *L*. For $x, a \in L$, $\lambda(x) = \lambda^e(x) = \sup\{\lambda(a) : x^* \land a = 0, a \in L\} = \sup\{\lambda(a) : x^{***} \land a = 0, a \in L\} = \lambda^e(x^{**}) = \lambda(x^{**}).$

(2) \Rightarrow (3). Suppose that condition (2) holds. Let $x, y \in L, x^* = y^*$. Then $x^{**} = y^{**}$. Thus $\lambda(x) = \lambda(x^{**}) = \lambda(y^{**}) = \lambda(y)$. Hence $\lambda(x) = \lambda(y)$.

(3) \Rightarrow (1). Suppose that condition (3) holds. $\lambda^e(x) = \sup\{\lambda(a) : x^* \land a = 0, a \in L\} \leq \sup\{\lambda(a) : (a \lor x)^* = x^*, a \in L\} \leq \lambda(a \lor x) = \lambda(x)$. Since $x^* \land a = 0$ implies $x^* = a^* \land x^* = (a \lor x)^*$ and by (3) $\lambda(x \lor a) = \lambda(x)$. This implies $\lambda^e \subseteq \lambda$. Clearly $\lambda \subseteq \lambda^e$. Hence λ is an *e*-filter of *L*.

4. Prime *e*-Fuzzy Filters and Maximal *e*-fuzzy Filters of a Stone ADL *L*

In this section, we introduce prime e-fuzzy filters and maximal e-fuzzy filters of a Stone ADL L and we discuss some properties of them.

DEFINITION 4.1. A proper *e*-fuzzy filter μ in a Stone ADL *L* is called a prime *e*-fuzzy filter if for any fuzzy filters λ and ν of *L*, $\lambda \cap \nu \subseteq \mu \Rightarrow \lambda \subseteq \mu$ or $\nu \subseteq \mu$.

THEOREM 4.2. A proper filter F is a prime e-filter of L and $\alpha \in [0, 1)$ if and only if the fuzzy subset given by

$$F_{\alpha}^{1}(x) = \begin{cases} 1 & \text{if } x \in F \\ \alpha & \text{if } x \notin F \end{cases}$$

is a prime e-fuzzy filter of L.

Proof. Suppose that a proper filter F of L is a prime e-filter of L and $\alpha \in [0, 1)$. Clearly F_{α}^{1} is a proper fuzzy filter of L. Since $(F_{\alpha}^{1})_{1} = F$ and $(F_{\alpha}^{1})_{\alpha} = L$ are e-filters of L. This implies by Theorem 3.4, F_{α}^{1} is a proper e-fuzzy filter of L. Now we prove that F_{α}^{1} is a prime e-fuzzy filter. Let ν and θ be any fuzzy filters of L such that $\nu \cap \theta \subseteq F_{\alpha}^{1}$. Suppose if possible that $\nu \nsubseteq F_{\alpha}^{1}$ and $\theta \nsubseteq F_{\alpha}^{1}$. Then there exist $x, y \in L$ such that $\nu(x) > F_{\alpha}^{1}(x)$ and $\theta(y) > F_{\alpha}^{1}(y)$. This indicates $F_{\alpha}^{1}(x) = F_{\alpha}^{1}(y) = \alpha$ and so $x \notin F$ and $y \notin F$. Since F is prime, $x \lor y \notin F$ and so $F_{\alpha}^{1}(x \lor y) = \alpha$. Now, $(\nu \cap \theta)(x \lor y) = \nu(x \lor y) \land \theta(x \lor y) \ge \nu(x) \land \theta(y) > \alpha \land \alpha = \alpha = F_{\alpha}^{1}(x \lor y)$, which is a contradiction to our assumption $\nu \cap \theta \subseteq F_{\alpha}^{1}$. Hence F_{α}^{1} is a prime e-fuzzy filter. Clearly F_{α}^{1} is an e-fuzzy filter and $(F_{\alpha}^{1})_{1} = F$. Hence F is an e-filter of L. Let A and B be any filters of L such that $A \cap B \subseteq F_{\alpha}$. Then $(A \cap B)_{\alpha}^{1} = A_{\alpha}^{1} \cap B_{\alpha}^{1} \subseteq F_{\alpha}^{1}$. Since F_{α}^{1} is prime, $A_{\alpha}^{1} \subseteq F_{\alpha}^{1}$ or $B_{\alpha}^{1} \subseteq F_{\alpha}^{1}$. Then there e filter of L. Let $F_{\alpha}^{1} = F_{\alpha}^{1}$ is prime, $A_{\alpha}^{1} \subseteq F_{\alpha}^{1} \cap B_{\alpha}^{1} \subseteq F_{\alpha}^{1}$. Suppose that $F_{\alpha}^{1} = F_{\alpha}^{1} \cap B_{\alpha}^{1} \subseteq F_{\alpha}^{1}$. Suppose F_{α}^{1} is prime, $A_{\alpha}^{1} \subseteq F_{\alpha}^{1} \cap B_{\alpha}^{1} \subseteq F_{\alpha}^{1}$.

THEOREM 4.3. A proper e-fuzzy filter λ of L is a prime e-fuzzy filter if and only if $Img(\lambda) = \{1, \alpha\}$, where $\alpha \in [0, 1)$ and the set $\lambda_* = \{x \in L : \lambda(x) = 1\}$ is a prime e-filter of L.

Proof. The converse part of this theorem follows from Lemma 4.2. Suppose that λ is a prime *e*-fuzzy filter. Clearly $1 \in Im(\lambda)$. Since λ is proper, there is $x \in L$ such that $\lambda(x) < 1$. We prove that $\lambda(x) = \lambda(y)$ for all $x, y \in L - \lambda_*$. Suppose that $\lambda(x) \neq \lambda(y)$ for some $x, y \in L - \lambda_*$. Without loss of generality we can assume that $\lambda(y) < \lambda(x) < 1$. Define fuzzy subsets θ and ϕ as follows:

$$\theta(z) = \begin{cases} 1 & \text{if } z \in [x) \\ 0 & \text{otherwise.} \end{cases}$$

and

$$\phi(z) = \begin{cases} 1 & \text{if } z \in \lambda_* \\ \lambda(x) & \text{otherwise.} \end{cases}$$

for all $z \in L$. Then it can be easily verified that both θ and ϕ are fuzzy filters of L. Let $z \in L$. If $z \in \lambda_*$, then $(\theta \cap \phi)(z) \leq 1 = \mu(z)$. If $z \in [x) - \lambda_*$, then $z = x \lor z$, and we have $(\theta \cap \phi)(z) = \theta(z) \land \phi(z) = 1 \land \lambda(x) = \lambda(x) \leq \lambda(z)$.

Also if $z \notin [x)$, then $\theta(z) = 0$, so that $(\theta \cap \phi)(z) = 0 \leq \lambda(z)$. Therefore for all $x \in L$, $(\theta \cap \phi)(x) \subseteq \lambda(x)$. But we have $\theta(x) = 1 > \lambda(x)$ and $\phi(y) = \lambda(x) > \lambda(y)$. This implies $\phi \not\subseteq \lambda$ and $\theta \not\subseteq \lambda$, which is a contradiction. Thus $\lambda(x) = \lambda(y)$ for all $x, y \in L - \lambda_*$ and hence $Im(\lambda) = \{1, \alpha\}$ for some $\alpha \in [0, 1)$. Let $P = \{x \in L : \lambda(x) = 1\}$. Since λ is proper, we get that P is a proper e-filter of L such that

$$\lambda(z) = \begin{cases} 1 & \text{if } z \in P \\ \alpha & \text{if } z \notin P. \end{cases}$$

for $\alpha \neq 1$. Hence by Lemma 4.2, $P = \lambda_*$.

THEOREM 4.4. If λ is a prime *e*-fuzzy filter of *L*, then $\lambda(x \lor y) = \lambda(x)$ or $\lambda(x \lor y) = \lambda(y)$ for all $x, y \in L$.

Proof. Suppose that λ is a prime *e*-filter of *L*, then there exists a prime *e*-filter *F* of *L* and $\alpha \in [0, 1)$ such that

$$\lambda(x) = \begin{cases} 1 & \text{if } x \in F \\ \alpha & \text{if } x \notin F \end{cases}$$

for all $x \in L$. If $x, y \in F$, then $x \lor y \in F$ and so $1 = \lambda(x) = \lambda(y) = \lambda(x \lor y)$. If $x \in F$ and $y \notin F$, then $x \lor y \in F$ and so $1 = \lambda(x) = \lambda(x \lor y)$. If $x \notin F$ and $y \notin F$, then $x \lor y \notin F$ and so $\alpha = \lambda(x) = \lambda(y) = \lambda(x \lor y)$. Hence the Theorem holds.

DEFINITION 4.5. A proper fuzzy filter λ in a Stone ADL L is called a maximal fuzzy filter if $Img(\lambda) = \{1, \alpha\}$, where $\alpha \in [0, 1)$ and the set λ_* is a maximal filter of L.

DEFINITION 4.6. A proper *e*-fuzzy filter λ in a Stone ADL *L* is called a maximal *e*-fuzzy filter if $Img(\lambda) = \{1, \alpha\}$, where $\alpha \in [0, 1)$ and the set λ_* is a maximal *e*-filter of *L*.

COROLLARY 4.7. Any maximal e-fuzzy filter of L is a prime e-fuzzy filter.

Proof. Let λ be a maximal *e*-fuzzy filter of *L*. Then $Im(\lambda) = \{1, \alpha\}$, and λ_* is a maximal *e*-filter of *L*. Since every maximal *e*-filter of *L* is a

prime *e*-filter of *L*. This implies λ_* is a prime *e*-filter of *L*. Hence λ is a prime *e*-fuzzy filter of *L*.

THEOREM 4.8. Every maximal fuzzy filter of a Stone ADL L is an e-fuzzy filter.

COROLLARY 4.9. Every maximal fuzzy filter of a Stone ADL L is prime e-fuzzy filter.

THEOREM 4.10. If λ is minimal in the class of all prime fuzzy filters L containing a given e-fuzzy filter, then λ is an e-fuzzy filter of L.

Proof. Suppose that λ is minimal in the class of all prime fuzzy filters containing an *e*-fuzzy filter θ of *L*. We prove that λ is an *e*-fuzzy filter. Since λ is a prime fuzzy filter of *L*, there exists a prime filter *P* of *L* such

$$\lambda(z) = \begin{cases} 1 & \text{if } z \in P \\ \alpha & \text{otherwise.} \end{cases}$$

for some $\alpha \in [0, 1)$. Suppose that λ is not an *e*-fuzzy filter of *L*, then there exist $x, y \in L$, $x^* = y^*$ such that $\lambda(x) \neq \lambda(y)$. Without loss of generality, assume $\lambda(x) = 1$ and $\lambda(y) = \alpha$. Consider a fuzzy ideal ϕ of *L* defined by

$$\phi(z) = \begin{cases} 1 & \text{if } z \in (L-P) \lor (x \lor y] \\ \alpha & \text{otherwise.} \end{cases}$$

Then $\theta \cap \phi \leq \alpha$. Otherwise there exists $a \in L$ such that $\phi(a) = 1$ and $\theta(a) > \alpha$. This implies $a \in (L - P) \lor (x \lor y]$.

 $\implies a = r \lor s \text{ for some } r \in L - P \text{ and } s \in (x \lor y]$

$$\implies a = r \lor s = r \lor ((x \lor y) \land s) = (r \lor x \lor y) \land (r \lor s) \le r \lor x \lor y$$

As $x^* = y^*$ implies $(r \lor x \lor y)^* = (r \lor y)^*$. Since θ is an *e*-fuzzy filter of $L, \alpha < \theta(a) = \theta(r \lor s) \le \theta(r \lor x \lor y) = \theta(r \lor y) \le \lambda(r \lor y)$. This implies $1 = \lambda(r \lor y)$.

Hence $\lambda(y) = 1$ or $\lambda(r) = 1$, which is a contradiction. Thus $\theta \cap \phi \leq \alpha$.

This implies there exists a prime fuzzy filter η such that $\eta \cap \phi \leq \alpha$ and $\theta \subseteq \eta$. Clearly $x \lor y \in (L - P) \lor (x \lor y]$. This implies $\phi(x \lor y) = 1$. Since $\phi \cap \eta \leq \alpha$, $\eta(x \lor y) \leq \alpha < \lambda(x \lor y) = 1$. This implies $\lambda \not\subseteq \eta$. This indicates λ is not minimal in the class of all prime fuzzy filters containing a given *e*-fuzzy filter, which is a contradiction. Therefore, λ is an *e*-fuzzy filter. THEOREM 4.11. Let λ be a prime fuzzy filter of a Stone ADL L, and $\lambda(0) = 0$. Then a fuzzy subset $\ell(\lambda)$ of L defined as $\ell(\lambda)(x) = \lambda'(x^*) \ \forall x \in L$ is an e-fuzzy filter of L.

Proof.
$$\ell(\lambda)(m) = \lambda'(m^*) = 1 - \lambda(m^*) = 1 - \lambda(0) = 1.$$

 $\ell(\lambda)(x \wedge y) = \lambda'((x \wedge y)^*) = 1 - \lambda(x^* \vee y^*)$
 $= (1 - \lambda(x^*)) \wedge (1 - \lambda(y^*))$
 $= \lambda'(x^*) \wedge \lambda'(y^*) = \ell(\lambda)(x) \wedge \ell(\lambda)(y)$

This implies $\ell(\lambda)$ is a fuzzy filter of L. Next we prove that $\ell(\lambda)$ is an *e*-fuzzy filter.

$$\ell(\lambda)^{e}(x) = \sup\{\ell(\lambda)(a) : x^{*} \land a = 0, \ a \in L\}$$

= $\sup\{\ell(\lambda)(a) : a^{*} \land x^{*} = x^{*}, \ a \in L\}$
= $\sup\{1 - \lambda(a^{*}) : a^{*} \land x^{*} = x^{*}, \ a \in L\}$
 $\leq 1 - \lambda(x^{*}), \text{ since } x^{*} = a^{*} \land x^{*} \leq a^{*} \text{ and } \lambda \text{ is an isotone}$
= $\ell(\lambda)(x)$

Clearly $\ell(\lambda) \subseteq \ell(\lambda)^e$

Hence $\ell(\lambda)$ is an *e*-fuzzy filter of *L*.

COROLLARY 4.12. Let λ be a maximal fuzzy filter of Stone ADL L and $\lambda(0) = 0$. Then $\ell(\lambda)$ is an *e*-fuzzy filter of L.

DEFINITION 4.13. [6] An ADL L is said to be a disjunctive ADL if for any $x, y \in L$, $Ann\{x\} = Ann\{y\}$ implies x = y.

THEOREM 4.14. Let L be a Stone ADL. If L is a disjunctive ADL, then every fuzzy filter of L is an e-fuzzy filter.

Proof. Suppose that λ is a fuzzy filter of disjunctive ADL *L*. Clearly $\lambda \subseteq \lambda^e$

Conversely,
$$\lambda^e(x) = \sup\{\lambda(a) : x^* \land a = 0, a \in L\}$$

 $\leq \sup\{\lambda(a) : (a \lor x)^* = x^*, a \in L\}$
 $\leq \lambda(a \lor x) = \lambda(x), \text{ since } L \text{ is disjunctive ADL}$

and λ is an istone.

This implies $\lambda = \lambda^e$. Hence every fuzzy filter is an *e*-fuzzy filter.

THEOREM 4.15. For any fuzzy filter λ of a Stone ADL L, a fuzzy subset $\lambda^*(x) = \sup\{\lambda(b) : x^* \land b = 0, b \in L\} \forall x \in L$ is an *e*-fuzzy filter.

Proof. For any $x, y \in L$,

$$\lambda^*(1) = \sup\{\lambda(b) : 1^* \land b = 0, \ b \in L\} \ge \lambda(1) = 1$$

$$\begin{split} \lambda^*(x) \wedge \lambda^*(y) &= \sup\{\lambda(a) : x^* \wedge a = 0, \ a \in L\} \wedge \sup\{\lambda(b) : y^* \wedge b = 0, \ b \in L\} \\ &= \sup\{\lambda(a) \wedge \lambda(b) : x^* \wedge a = 0, \ y^* \wedge b = 0, \ a, b \in L\} \\ &\leq \sup\{\lambda(a \wedge b) : (x \wedge y)^* \wedge a \wedge b = 0, \ a, b \in L\} \\ &= \lambda^*(x \wedge y) \\ \lambda^*(x) \vee \lambda^*(y) &= \sup\{\lambda(a) : x^* \wedge a = 0, \ a \in L\} \vee \sup\{\lambda(b) : y^* \wedge b = 0, \ b \in L\} \\ &= \sup\{\lambda(a) \vee \lambda(b) : x^* \wedge a = 0, \ y^* \wedge b = 0, \ a, b \in L\} \\ &\leq \sup\{\lambda(a \vee b) : (x \vee y)^* \wedge a \vee b = 0, \ a, b \in L\} \\ &= \lambda^*(x \vee y) \end{split}$$

This implies λ^* is a fuzzy filter of L. Next we prove that λ is an *e*-fuzzy filter. Now

$$\lambda^*(x^{**}) = \sup\{\lambda(c) : x^{***} \land c = 0, \ c \in L\} = \sup\{\lambda(c) : x^* \land c = 0, \ c \in L\}$$
$$= \lambda^*(x). \text{ Therefore } \lambda^* \text{ is an } e\text{-fuzzy filter of } L. \square$$

References

- [1] B. A. Alaba, G. M. Addis, *Fuzzy congruence relations on almost distributive lattices*, Ann. Fuzzy Math. Inform.
- B. A. Alaba and T. G. Alemayehu, e-Fuzzy filters of MS-algebras, Korean J. Math. 27 (4) (2019), 1159–1180.
- [3] H. Hadji-Abadi and M.M. Zahedi, Some results on fuzzy prime spectrum of a ring, Fuzzy sets and systems 77 (1996), 235–240.
- [4] R. Kumar, Fuzzy prime spectrum of a ring, Fuzzy sets and systems 46 (1992), 147–154.
- [5] R. Kumar, Spectrum prime fuzzy ideals, Fuzzy sets and systems 62 (1994), 101– 109.
- [6] N. Rafi, Ravi Kumar Bandaru and G.C. Rao, e-filters in Stone Almost Distributive Lattices, Chamchuri Journal of Mathematics 7 (2015), 16–28.
- [7] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512–517.
- [8] U. M. Swamy and D. V. Raju, *Fuzzy ideals and congruences of lattices*, Fuzzy sets and systems 95 (1998), 249–253.
- U. M. Swamy and G. C. Rao, Almost Distributive Lattices, J. Aust. Math. Soc. (Series A) 31 (1981), 77–91.
- [10] U. M. Swamy, G. C. Rao, and G. Nanaji Rao, Pseudo-complementation on Almost Distributive Lattices, Southeast Asian Bullettin of Mathematics 24 (2000), 95–104.

- [11] U. M. Swamy, G. C. Rao, and G. Nanaji Rao, Stone Almost Distributive Lattices, Southeast Asian Bullettin of Mathematics 24 (2000), 513–526.
- [12] U. M. Swamy, Ch. Santhi Sundar Raj, and N. Teshale, *Fuzzy ideals of almost distributive lattices*, Ann. Fuzzy Math. Inform., accepted for publication.
- [13] U.M. Swamy, Ch. Santhi Sundar Raj, A. Natnael Teshale, L-Fuzzy Filters of Almost Distributive Lattices, IJMSC, 8, 1(2018), 35–43.
- [14] Bo. Yuan and W. Wu, Fuzzy ideals on a distributive lattice, Fuzzy Sets and Systems 35 (1990), 231–240.
- [15] L. A. Zadeh, *Fuzzy sets*, Inform. and Control 8 (1965), 338–353.

Yohannes Gedamu Wondifraw

Departement of Mathematics Bahir Dar University Bahir Dar, Ethiopia *E-mail*: yohannesg27@gmail.com

Teferi Getachew Alemayehu

Departement of Mathematics Debre Berhan University Debre Berhan , Ethiopia *E-mail*: teferigetachew3@gmail.com