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ON 2-INNER PRODUCT SPACES AND REPRODUCING

PROPERTY

Saeed Hashemi Sababe

Abstract. This paper is devoted to study the reproducing prop-
erty on 2-inner product Hilbert spaces. We focus on a new structure
to produce reproducing kernel Hilbert and Banach spaces. Accord-
ing to multi variable computing, this structures play the key role in
probability, mathematical finance and machine learning.

1. Introduction

It is well known by functional analysis that point evaluations, which
can be considered as a functional or operator, due to the algebraic
construction of range space, are not always bounded. There are some
special cases. For example, a point evaluation from the normed space
(B(Ω), || · ||∞) of all bounded from Ω to a field K is always bounded. A
reproducing kernel Hilbert space (RKHS) is a Hilbert space H of func-
tions defined on a determined set Ω, such that point-evaluations for
all x ∈ Ω are continuous linear functionals. It is clear that continuity
should be held in the sense of the norm in H. These kind of Hilbert
spaces (RKHS) are a proper hosting of applications in pure approach to
complex analysis, harmonic analysis, quantum mechanics and applied
approach to machine learning and applied statistics [2, 6–9,14–18].
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The most important theorem on this approach is a fundamental the-
orem of Aronszajn which establishes an explicit correspondence between
positive definite kernels and RKHSs in two sides of a seesaw. On the
other hand, every positive definite kernel is also the covariance kernel
of a Gaussian process.By the continuity of the point-evaluations, it is
obvious that every finite dimension Hilbert space is naturally a RKHS.
This causes us to restrict our focus on the infinite Hilbert spaces. So
for a given positive kernel, we should explore to find an application of
infinite spaces.

On this view side, there are many studies which are working on varied
features of the application and all of them are constructing an ordinary
inner product, using the properties of positive kernels, to reach the re-
sults. Our research is established on another property, 2-inner product.

Studying the 2-inner product reproducing kernel spaces has found di-
verse applications in different approaches. As we may touch a RKHS
as an extension of a Hilbert space, a 2-inner product is an extension of
an inner product, endowed with a property which modifies some funda-
mental properties of an ordinary one.

Since 1963, S. Gahler published two papers entitled 2-metrische Räume
und ihr topologische Strukhur and Lineare 2-normierte Raume, a num-
ber of authors have done considerable works on geometric structures
of 2-metric spaces and linear 2-normed spaces, and have applied these
spaces to several fields of mathematics in many ways. In 1969, S. Gahler
introduced also the concept of n metric spaces in a series of his papers
entitled Untersuchungen uber verallemeinerte n-metriscke Raume, which
extend the concept of 2-metric spaces to the general case, and provided
many properties of topological and geometrical structures. Recently, A.
Misiak introduced the concept of n-inner product spaces and extended
many results in 2 inner product spaces, which in turn were introduced
and studied by C. Diminnie, S. Gahler and A. White, to n-inner product
spaces in his doctoral dissertation.

In the following, we prepare some preliminaries of 2-inner product
spaces and review some important and useful theorems and lemmas.Then
we defined a 2-inner product reproducing kernel Hilbert spaces and
proved some theorems.
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2. Preliminaries and Theorems

This section is to review the required concepts and definitions. we
also, recall some important lemmas and theorems. Among these content,
Riesz representation theorem on 2-inner product spaces plays a key roll
in the next sections. This theorem is a wise extension of basic type
in [20] to 2-inner product spaces.

Definition 2.1. [1] The Hilbert space H of functions defined on a
fixed set Ω such that for each x ∈ Ω the evaluation functional at x, i.e.,
δx(f) := f(x), f ∈ H, is bounded on H is called a reproducing kernel
Hilbert space.

By the Riesz representation theorem, corresponding to each x ∈ Ω
there exist a unique function kx : Ω× Ω→ C such that{

{kx}x∈Ω ⊂ H,

f(x) = 〈f, kx〉H, x ∈ Ω, f ∈ H.

Due to the existence of such kx, there exist a function K : Ω × Ω → C
such that

K(x, y) = 〈kx, ky〉H.
The above function K is called the reproducing kernel of H. It can be
easily shown that the space generated by {kx}x∈Ω is dense in H and every
element of H can be estimated by linear combinations of functions kx.

Similar structure can be defined for Banach spaces with a quick differ-
ence. More details about these kind of spaces can be found in [1,19,23].
In following, we extend these kind of spaces to multi linear forms, based
on 2-inner products and 2-norms.

Definition 2.2. [3, 12] Let V be a real or complex vector space of
dimension greater than 1. The functional 〈·, ·; ·〉 defined on V3 is called
a 2-inner product on V provided the following conditions hold,

(i) 〈x, x; z〉 ≥ 0 and 〈x, x; z〉 = 0 iff x and z are linearly dependent.
(ii) 〈x, x; z〉 = 〈z, z;x〉.

(iii) 〈y, x; z〉 = 〈x, y; z〉.
(iv) 〈αx, y; z〉 = α〈x, y; z〉, for all scalars α.
(v) 〈x1 + x2, y; z〉 = 〈x1, y; z〉+ 〈x2, y; z〉.

In this case, the pair (V, 〈., .; .〉) is called a 2-inner product space.
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For a 2-inner product space (V, 〈., .; .〉) and x, y, b ∈ V

x ⊥b y ⇔ 〈x, y; b〉 = 0.

A 2-norm on V × V can be defined naturally, corresponding to 2-inner
product as

‖x, y‖22 = 〈x, x; y〉.
The normed space (V2, ‖·, ·‖2) and its relation to corresponding `2 space
may be studied deeply for the convergence properties, but our plan is
different in this research and we use ‖·, ·‖ just referring to ‖·, ·‖2.

By the above definition, this norm satisfies the following conditions:

1. ‖x, z‖ ≥ 0 and ‖x, z‖ = 0 if and only if x and z are linearly
dependent.

2. ‖x, z‖ = ‖z, x‖.
3. ‖αx, z‖ = |α|‖x, z‖ for all scalar α.
4. ‖x1 + x2, z‖ ≤ ‖x1, z‖+ ‖x2, z‖.
2-norms have several interesting properties. More details can be found

in [11].

Example 2.3. [10] For a `2 space V, the standard 2-inner product is
defined on V by

〈x, y; z〉 =

∣∣∣∣ 〈x, y〉 〈x, z〉〈z, y〉 〈z, z〉

∣∣∣∣ = 〈x, y〉〈z, z〉 − 〈x, z〉〈z, y〉.

This norm can be extended to a `p space for p > 2 as a subspace of `2.
(See [10])

For a 2-inner product space V, let {ei}ni=1 be a linearly indepen-
dent subset of V, then {ei}ni=1 is a b-orthonormal system if for b ∈ V,
〈ei, ej; b〉 = 0 for i 6= j and 〈ei, e1; b〉 = 1 where 1 ≤ i ≤ n.

Lemma 2.4. [11] For a 2-inner product space V, the subspace spanned
by a b-orthonormal system {ei}ni=1 is closed.

Definition 2.5. [11] Let V be a 2-inner product space and b ∈ V,
then

1. A sequence {xn} in V is said to be a b-Cauchy sequence if for
every ε > 0 there exists N > 0 such that for every m,n ≥ N ,
0 < ‖xn − xm, b‖ < ε .

2. V is said to be b-Hilbert if every b-Cauchy sequence is convergent
in the semi-normed space (V, ‖., b‖).
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For a 2-normed space (V, ‖., .‖) and a subspace W of V, let b ∈ V be
fixed. A functional T : W × 〈b〉 → R(C) is called a b-linear functional
on W × 〈b〉 whenever it is linear corresponding to the first variable.
In this case, we can looking at T as an operator and speak about its
boundedness. A b-linear functional T : W × 〈b〉 → R(C) is said to
be bounded if there exists a real number M > 0 such that |T (x, b)| ≤
M‖x, b‖ for every x ∈ W .

The norm of the b-linear functional T is naturally defined as an ex-
tension of operator norm by

‖T‖ = inf {M > 0; |T (x, b)| ≤M‖x, b‖,∀x ∈ W}
= sup {|T (x, b)|; ‖x, b‖ = 1} ,

and |T (x, b)| ≤ ‖T‖‖x, b‖.

Suppose V is a vector space and b ∈ V. let y1, y2 ∈ V , then y1 is said
to be b-congruent to y2 iff (y1 − y2) ∈ 〈b〉, the subspace generated by b.

Theorem 2.6. (Riesz Representation Theorem on 2-Inner Product
Spaces) [19] Let H be a b-Hilbert space and T ∈ H∗b then there exists
a unique y ∈ H up to b-congruence such that T (x, b) = 〈x, y; b〉 and
‖T‖ = ‖y, b‖.

In the following, we extend the concept of reproducing kernel to 2-
inner product spaces. This extension is along with the previews con-
cepts. The main goal is to construct a new space with more applicable
properties.

First of all, let us to consider the conditional covariance. For a prob-
ability space (Ω,F ,P), let S be the space of all independent and identi-
cally distributed (iid) random variables X and Y but not independent to
Z. For every three random variables X, Y and Z, conditional covariance
is defined as:

Cov(X, Y |Z) = E(XY |Z)− E(X|Z)E(Y |Z),

where E(X) is the expectation value of X. Define a bilinear form on S
as:

〈X, Y |Z〉S =

{
Cov(X, Y |Z) X 6= Y,

0 X = Y.
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It is easy to check the conditions of Definition 2.2:

(i) By the properties of covariance, the first part holds. For the second
part, there are several examples that X and Z are dependent and
Var(X|Z) = 0. Since Cov(X,X|Z) = Var(X|Z). This shows that
it may be possible that Cov(X,X|Z) = 0 while X 6= 0.

(ii) The second property is about the symmetric property of equal first
and second entry with the third one. It doesn’t holds in our manner
in general.

(iii) The third property holds naturally, because the bilinear form is
real valued.

(iv) For the fourth property we have

〈αX, Y |Z〉S = Cov(αX, Y |Z)

= E(αXY |Z)− E(αX|Z)E(Y |Z)

= αE(XY |Z)− αE(X|Z)E(Y |Z)

= αCov(X, Y |Z).

(v) For this property we have

〈X1 +X2, Y |Z〉S
= Cov(X1 +X2, Y |Z)

= E((X1 +X2)Y |Z)− E((X1 +X2|Z)E(Y |Z)

= E(X1Y +X2Y |Z)− E(X1 +X2|Z)E(Y |Z)

= E(X1Y |Z) + E(X2Y |Z)− [E(X1|Z) + E(X2)]E(Y |Z)

= E(X1Y |Z) + E(X2Y |Z)− E(X1|Z)E(Y |Z)− E(X2)E(Y |Z)

= E(X1Y |Z)− E(X1|Z)E(Y |Z) + E(X2Y |Z)− E(X2)E(Y |Z)

= Cov(X1, Y |Z) + Cov(X2, Y |Z)

= 〈X1, Y, Z〉S + 〈X2, Y, Z〉S.
We used the independency of X1, X2 and Y in the above equations.

A bilinear form with properties (i,iii,iv,v) of Definition 2.2 is called a
partial symmetric semi 2-inner product. In this case, conditional covari-
ance is a partial symmetric semi 2-inner product.

Definition 2.7. Let Ω be a set and H be a linear space of two
variable functions f : Ω× Ω→ R endowed with a 2-inner product. Fix
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g ∈ H. So we can speak about g-Hilbert space Hg. Let Hg be a subspace
of Hg such that all 2-variable evaluation

δ(x,y)(f) = f(x, y),

be bounded functions. So by theorem (2.6), there exist a function k(x,y)
such that

δ(x,y)(f) = f(x, y) = 〈f, k(x,y); g〉.
Now we can define a kernel function K : Ω× Ω× Ω→ R by

K(x, y, z) = 〈k(x,y), k(y,z); g〉.
In this case

K(x, x, x) = 〈k(x,x), k(x,x); g〉 = ‖k(x,x), g‖2.
The pair (Hg, K) is called a 2-inner product reproducing kernel Hilbert
space (2IPRKHS in short).

An examples of 2-inner product reproducing kernel Hilbert space is
as follows:

Example 2.8. Let H2
2 be the two variable Hardy-Hilbert space, con-

sists of all analytic functions having power series representations with
square-summable complex coefficients and HI be a subspace of H2

2 such
that

HI =

{
f : f(z1, z2) =

∞∑
n=0

anz
n
1 z

n
2 ; a1 = 0 and

∞∑
n=0

|an|2 <∞

}
,

Where I denotes the identity function and

f(z1, z2) =
∞∑
n=0

anz
n
1 z

n
2 , and h(z1, z2) =

∞∑
n=0

bnz
n
1 z

n
2 .

The 2-inner product on HI is defined by

〈f, h; I〉 = a0b0 +
∞∑
n=2

anbn.

In this case, let k(z1,z2)(t1, t2) = 1 +
∑∞

n=2 z
n
1 z

n
2 t

n
1 t

n
2 , then

f(z1, z2) = 〈f, k(z1,z2); I〉,
and

K(z1, z2, z3) = 〈k(z1,z2), k(z2,z3); I〉 = 1 +
∞∑
n=2

|z2|2nzn1 zn3 .
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We follow by studying some properties of 2-inner product reproducing
kernels.

Proposition 2.9. If Hg is a 2IPRKHS on X with reproducing kernel

K(x, y, z), then K(x, y, x) = K(y, x, y).

Proof. By properties of 2-inner product we have

K(x, y, x) = 〈k(x,y), k(y,x); g〉 = 〈k(y,x), k(x,y); g〉 = K(y, x, y).

Let Hg be a 2-inner product reproducing kernel Hilbert space and {ei}i ∈
I be a basis for this space. Note that each ei is an element of Hg and
so is a function. We can define matrix K = (〈ei, ej; g〉). This matrix is
positive. To see that, let x ∈ Hg. Then

〈Kx, x〉 = x∗Kx = (x∗〈ei, ej, g〉x) = (〈ei, ej; g〉‖x‖2) ≥ 0.

In general form and similar to ordinary reproducing kernel Hilbert spaces,
2-inner product reproducing kernel Hilbert space corresponding to a 2-
inner product kernel, is unique. Convergence of a sequence of elements
of Hg is similar to RKHS.

Lemma 2.10. Let Hg be a 2IPRKHS and let {fn} ⊆ Hg. If limn ‖fn−
f‖g = 0, then f(x) = limnfn(x) for every x.

Uniqueness of kernel function corresponding to a 2IPRKHS is an other
important problems. Naturally, it seems that the kernel function should
be unique.

Proposition 2.11. Let Hgi, i = 1, 2 be 2IPRKHS’s with kernels,
Ki(x, y, z), i = 1, 2. If K1(x, y, z) = K2(x, y, z) for all x, y, z then Hg1 =
Hg2 and ‖f‖g1 = ‖f‖g2 for every f where ‖.‖gi is the norm corresponding
to Hgi.

Proof. It is easy to see that Hg is the closure of a set contains all
of functions k(x,y) and also it is a linear space. So let {k(xi,yj)}i,j be a
basis of kernels for Hg1 and {k′(xi,yj)

}i,j be a basis of kernels for Hg2. By

properties of 2-inner product kernels and equality of kernel functions we
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have

‖f‖2g1 =
∑
i,j,t

αijαjt〈k(xi,yj), k(yj ,zt); g〉

=
∑
i,j,t

αijαjtK1(x, y, z)

=
∑
i,j,t

αijαjtK2(x, y, z)

=
∑
i,j,t

αijαjt〈k′(xi,yj)
, k′(yj ,zt); g〉

= ‖f‖2g2.

Moreover, by the previews lemma, boundary elements are the same.
Equality of norms on Hg1 and Hg2 is a direct consequence of equality on
the mentioned dense subspaces.

Motivated to extend these concepts to wavelets, we try to define Parseval
frames in 2IPRKHS’s.

Definition 2.12. Let Hg be a 2IPRKHS with 2 inner product, 〈., .; .〉.
A set of vectors {fs : s ∈ S} ⊆ Hg is called a Parseval frame for Hg

provided that

‖h‖2g =
∑
s∈S

|〈h, fs; g〉|2.

for every h ∈ Hg.

Theorem 2.13. Let Hg be a 2IPRKHS on X with reproducing kernel
K(x, y, z). Then {fs : s ∈ S} ⊆ Hg is a Parseval frame for Hg if and
only if

K(x, y, z) =
∑
s∈S

fs(x, y)fs(y, z).

Where the series converges point-wise.
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Proof. Let {fs : s ∈ S} be Parseval frame. then we have

K(x, y, z) = 〈k(x,y), k(y,z); g〉

=
∑
s∈S

〈k(x,y), fs; g〉〈fs, k(y,z); g〉

=
∑
s∈S

fs(x, y)fs(y, z).

Conversely, let αij are scalars and h =
∑

ij αijk(xi,yj) is any finite linear
combination of kernel functions, then

‖h‖2g =
∑
i,j,t

αijαjt〈k(xi,yj), k(yj ,zt)〉

=
∑
i,j,t

αijαjtK(xi, yj, zt)

=
∑
i,j,t

αijαjt

∑
s∈S

fs(yj)fs(yi)

=
∑
i,j,t

αijαjt

∑
s∈S

〈k(xi,yj), fs; g〉〈fs, k(yj ,zt); g〉

=
∑
s∈S

〈
∑
i,j

αijk(xi,yj), fs; g〉〈fs,
∑
j,t

αjtk(yj ,zt); g〉

=
∑
s∈S

|〈h, fs; g〉|2.

Now it is easy to see that if we take a limit of a norm convergent sequence
of vectors on both sides of this identity, then we obtain the identity for
the limit vector, too, and the proof is complete.
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