DOI QR코드

DOI QR Code

Effect of Die Attach Film Composition for 1 Step Cure Characteristics and Thermomechanical Properties

다이접착필름의 조성물이 1단계 경화특성과 열기계적 물성에 미치는 영향에 관한 연구

  • 성충현 (동의대학교 고분자소재공학전공)
  • Received : 2020.10.14
  • Accepted : 2020.12.04
  • Published : 2020.12.31

Abstract

The demand for faster, lighter, and thinner portable electronic devices has brought about a change in semiconductor packaging technology. In response, a stacked chip-scale package(SCSP) is used widely in the assembly industry. One of the key materials for SCSP is a die-attach film (DAF). Excellent flowability is needed for DAF for successful die attachment without voids. For DAF with high flowability, two-step curing is often required to reduce a cure crack, but one-step curing is needed to reduce the processing time. In this study, DAF composition was categorized into three groups: cure (epoxy resins), soft (rubbers), hard (phenoxy resin, silica) component. The effect of the composition on a cure crack was examined when one-step curing was applied. The die-attach void and flowability were also assessed. The cure crack decreased as the amount of hard components decreased. Die-attach voids also decreased as the amount of hard components decreased. Moreover, the decrease in cure component became important when the amount of hard component was small. The flowability was evaluated using high-temperature storage modulus and bleed-out. A decrease in the amount of hard components was critical for the low storage modulus at 100℃. An increase in cure component and a decrease in hard component were important for the high bleed-out at 120℃(BL-120).

휴대용기기에 대한 경박단소 및 빠른 속도에 대한 요구는 반도체 패키징 기술에도 변화를 가져왔다. 이에 대한 대응의 하나로 stacked chip scale package(SCSP)가 업계에서 사용되고 있다. SCSP를 구현하기 위한 핵심소재 중의 하나가 die attach film(DAF)이다. 특히, 다이와 기판을 접착하거나 다이와 다이를 접착하는 경우, DAF의 접착필름은 기판의 단차나 본딩 와이어 사이를 기공의 발생 없이 채우기 위해 우수한 고온 유동성이 요구된다. 그러나 이 경우 경화 크랙의 발생을 최소화하기 위해 2단계 경화가 종종 요구되나, 공정시간 단축을 위해서는 1단계 경화가 바람직하다. 본 연구에서는 DAF 접착필름의 조성물을 경화 성분(에폭시 수지), 유연 성분(고무성분), 딱딱한 성분(페녹시수지, 실리카), 3개 군으로 분류하고, 조성물의 변화에 따른 1단계 경화시 경화 크랙, 고온 유동성, die attach (DA) 기공발생에 대한 영향을 혼합물 실험 설계법를 통해 살펴보았다. 경화 크랙은 딱딱한 성분 함량에 가장 크게 영향을 받았으며, 함량이 증가할수록 경화 크랙이 감소하였다. DA 기공의 발생은 딱딱한 성분의 함량이 감소할수록 감소하였으며, 특히, 딱딱한 성분의 함량이 적은 경우는 경화 성분의 함량이 감소할수록, 기공의 발생이 억제되었다. 고온 유동성은 100℃ 저장탄성 계수와 120℃에서의 블리드 아웃(BL-120)으로 평가되었다. 100℃의 고온 저장탄성률은 딱딱한 성분의 감소가 중요하였고, 유동성 지표인 BL-120의 경우는 경화 성분의 함량의 증가와 딱딱한 성분의 감소가 동시에 중요하였다.

Keywords

References

  1. B. Bottoms, M. Tsuriya, C. Richardson, "iNEMI packaging technology roadmap highlights", Proceedings of 2014 International Conference on Electronics Packaging, Toyama, Japan, pp. 188-192, April, 2014. DOI: https://doi.org/10.1109/ICEP.2014.6826686
  2. S. Olson, K. Hummler and B. Sapp, "Challenges in thin wafer handling and processing", Proceedings ofASMC 2013 SEMI Advanced Semiconductor Manufacturing Conference, Saratoga Springs, NY, USA, pp. 62-65, May, 2013 DOI: https://doi.org/10.1109/ASMC.2013.6552776
  3. BK. Appelt, A. Tseng, CH Chen, YS Lai, "Fine pitch copper wire bonding in high volume production", Microelectronics Reliability, Vol. 51, Iss. 1, pp. 13-20, 2011. DOI: https://doi.org/10.1016/j.microrel.2010.06.006
  4. SC Chong, DHS Wee, VS Rao, NS. Vasaria, "Developement of package-on-package using embedded wafer-level package approach", IEEE Transcations on Components Packaging and Manufacturing Technology, Vol. 3, No. 10, pp. 1654-1662, 2013. DOI: https://doi.org/10.1109/TCPMT.2013.2275009
  5. CT. Ko, KN Chen, "Wafer-level bonding/stacking technology for 3D integration", Microelectronics Reliability, Vol. 50, Iss. 4, pp. 481-488, 2010. DOI: https://doi.org/10.1016/j.microrel.2009.09.015
  6. JH Lau, "Overview and outlook of through-silicon via (TSV) and 3D integrations", Microelectronics International, Vol. 28, Iss. 2, pp. 8-22, 2011. DOI: https://doi.org/10.1108/13565361111127304
  7. X. Zhang, JH. Lau, C. S. Premachandran, SC Chong, LC Wai, "Development of a Cu/low-k stack die fine pitch ball grid array (FBGA) package for system in package applications", IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 1, No. 3, pp. 299-309, 2011. DOI: https://doi.org/10.1109/TCPMT.2010.2100292
  8. S. Priyabadini, T. Sterken, L. Van Hoorebeke, J. Vanfleteren, "3-D stacking of ultrathin chip packages: an innovative packaging and interconnection technology", IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 3, No. 7, pp. 1114-1122, 2013. DOI: https://doi.org/10.1109/TCPMT.2012.2234830
  9. S. Yoshida, G. Fukuda, T. Noji, Y. Kobayashi, S. Kawasaki, "Ka-band 2-stacked chip-scale-package using GaAs PA MMIC with hot-via interconnections for spacecraft applications", Proceedings of 2013 European Microwave Conference, Nuremberg, Germany, pp. 223-226, October, 2013.
  10. B. H. Oh, H. Y. Loo, P. T. Oh and E. K. Lee, "Challenges in Stacked CSP Packaging Technology," Proceedings of International Conference on Electronic Materials and Packaging, Kowloon, China, pp. 1-4, December, 2006. DOI: https://doi.org/10.1109/EMAP.2006.4430609
  11. M. Karnezos, "3D packaging: where all technologies come together", Proceedings of EIEEE/CPMT/SEMI 29th International Electronics Manufacturing Technology Symposium, San Jose, CA, USA, pp. 64-67, July, 2004. DOI: https://doi.org/10.1109/IEMT.2004.1321633
  12. S. R. Vempati, N. Su, CH Khong, YY Lim, K. Vaidyanathan, "Development of 3-D silicon die stacked package using flip chip technology with micro bump interconnects", Proceedings of 2009 59th Electronic Components and Technology Conference, San Diego, CA, USA, pp. 980-987, June 2009. DOI: https://doi.org/10.1109/ECTC.2009.5074132
  13. L. Chen, J. Adams, HW Chu and X. Fan, "Modeling of moisture over-saturation and vapor pressure in die-attach film for stacked-die chip scale packages", Journal of Materials Science: Materials in Electronics, Vol 27, Iss. 1, pp. 481-488, 2016. DOI: https://doi.org/10.1007/s10854-015-3778-5
  14. HH. Ren, XS. Wang, S. Jia, "Fracture analysis on die attach adhesives for stacked packages based on in-situ testing and cohesive zone model", Microelectronics Reliability, Vol. 53, Iss. 7, pp. 1021-1028, 2013. DOI: https://doi.org/10.1016/j.microrel.2013.04.001
  15. N. Ye, Q. Li, H. Zhang, Z. Ji, X. Yang, CT. Chiu, H. Takiar, "Challenges in assembly and reliability of thin NAND memory die", Proceedings of 2016 IEEE 66th Electronic Components and Technology Conference, Las Vegas, NV, USA, pp. 1840-1846, May, 2016, DOI: https://doi.org/10.1109/ECTC.2016.226
  16. BU. Kang, "Interfacial fracture behavior of epoxy adhesive for electronic components", Journal of the Korea Academia-Industrial, Vol. 12, No. 3, pp. 1479-1487, 2011. DOI: https://doi.org/10.5762/KAIS.2011.12.3.1479
  17. SN, Song, HH. Tan, PL. Ong, "Die attach film application in multi die stack package", Proceedings of 2005 7th Electronics Packaging Technology Conference, Singapore, pp. 848-852, December, 2005. DOI: https://doi.org/10.1109/EPTC.2005.1614517
  18. J. Liang, C. Ku and C. Chung, "Applications of film over wire and die attached film in a stacked chip scale package", Proceedings of 2006 11th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, pp. 289-292, October, 2016. DOI: https://doi.org/10.1109/IMPACT.2016.7800052
  19. CL. Chung, CW. Ku, HC. Hsu and SL. Fu, "Comparison between die attach film (DAF) and film over wire (FOW) on stack-die CSP application", Proc. of 2009 European Microelectronics and Packaging Conference, pp. 1-3, Rimini, Italy, 2009.
  20. C. Sung, "Optimization of elastic modulus and cure characteristics of composition for die attach film", Journal of the Korea Academia-Industrial, Vol. 20, No.4, pp 503-509, 2019. DOI: https://doi.org/10.5762/KAIS.2019.20.4.503