DOI QR코드

DOI QR Code

Recovery of Metallic Pd with High Purity from Pd/Al2O3 Catalyst by Hydrometallurgy in HCl

염산 침출용액을 이용한 Pd/Al2O3 촉매에서 고순도 팔라듐 회수

  • Kim, Ye Eun (Ulsan Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Byun, Mi Yeon (Ulsan Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Baek, Jae Ho (Ulsan Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, Kwan-Young (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Man Sig (Ulsan Division, Korea Institute of Industrial Technology (KITECH))
  • 김예은 (한국생산기술연구원 울산본부) ;
  • 변미연 (한국생산기술연구원 울산본부) ;
  • 백재호 (한국생산기술연구원 울산본부) ;
  • 이관영 (고려대학교 화공생명공학과) ;
  • 이만식 (한국생산기술연구원 울산본부)
  • Received : 2020.11.05
  • Accepted : 2020.11.19
  • Published : 2020.12.31

Abstract

Palladium (Pd) has been widely used in various industrial applications such as jewelry, catalyst, and dental materials despite its limited resources. It has been gaining attention to recover Pd with high purity from the spent materials. This study investigated the optimum conditions for the leaching and recovery of metallic Pd. The leaching parameters are HCl concentration, temperature, time, concentration of oxidants, and pulp density. 97.2% of Pd leaching efficiency was obtained in 3 M HCl with 3 vol% oxidants at 80℃ for 60 min. The ratio of hydrogen peroxide to sodium hypochlorite played a critical role in the leaching efficiency due to the supply of Cl- ions in the leachate. Moreover, the complete recovery of Pd in the leachate was achieved at 80℃ with 0.3 formic acid/leachate after adjusting the pH value of 7. This situation was ascribed to the decomposition of formic acid into hydrogen gas and carbon dioxide at 80℃. ICP-AES and XRD characterized the recovered Pd powder, and the purity of the recovered powder was found to be 99.6%. Consequently, the recovered Pd powder with high purity could be used in circuits, catalyst precursors, and surgical instruments.

팔라듐(Pd)은 희소금속임에도 불구하고 보석, 촉매 및 치과 소재와 같은 다양한 산업 응용 분야에 널리 사용되고 있다. 이러한 가운데 폐자원으로부터 고순도 Pd를 회수하는 기술들이 주목받고 있다. 본 연구에서는 염산 용액에서 팔라듐 침출 및 회수를 위한 최적 조건을 조사하였다. 염산 농도, 침출온도, 침출시간, 산화제 농도 및 광액 농도 등 다양한 실험조건에서 팔라듐 침출 실험을 수행하였다. 염산농도 3 M, 산화제 3 vol%, 침출온도 80 ℃, 침출시간 60분에서 약 97.2%의 침출율을 나타내었다. 과산화수소/차아염소산나트륨의 비율은 침출용액 내 염소 이온 농도를 증가시켜 팔라듐 침출을 용이하게 하는 역할을 하는 것으로 확인하였다. 또한 pH 7에서 포름산을 첨가하여 80 ℃에서 30분 간 교반할 시 99.6% 순도를 가지는 팔라듐 분말을 회수할 수 있었다. 이는 포름산이 80 ℃에서 수소 가스와 이산화탄소로 분해되어 환원제 역할을 하였기 때문이라고 사료된다. 따라서 회수 되어진 고순도 팔라듐 분말은 회로, 촉매 전구체 및 수술기구에 사용될 것으로 기대되어진다.

Keywords

References

  1. Dai, C., Li, Y., Ning, C., Zhang, W., Wang, X., and Zhang, C., "The Influence of Alumina Phases on the Performance of Pd/Al2O3 Catalyst in Selective Hydrogenation of Benzonitrile to Benzylamine", Appl. Catal. A: Gen., 545(5), 97-103 (2017). https://doi.org/10.1016/j.apcata.2017.07.032
  2. Lott, P., Dolcet, P., Casapu, M., Grunwaldt, J.-D., and Deutschmann, O., "The Effect of Prereduction on the Performance of Pd/Al2O3 and Pd/CeO2 Catalysts during Methane Oxidation", Ind. Eng. Chem. Res., 58(28), 12561-12570 (2019). https://doi.org/10.1021/acs.iecr.9b01267
  3. Ivanova, A. S., Slavinskaya, E. M., Gulyaev, R. V., Zaikovskii, V. I., Stonkus, O. A., Danilova, I. G., Plyasova, L. M., Polukhina, I. A., and Boronin, A. I., "Metal-Support Interactions in Pt/Al2O3 and Pd/Al2O3 Catalysts for CO Oxidation", Appl. Catal. B: Environ., 97(1-2), 57-71 (2010). https://doi.org/10.1016/j.apcatb.2010.03.024
  4. Kim, J. G., "Material Flow and Industrial Demand for Palladium in Korea," Resour. Conserv. Recycl., 77, 22-28 (2013). https://doi.org/10.1016/j.resconrec.2013.04.009
  5. Kolliopoulos, G., Balomenos, E., Giannopoulou, I., Yakoumis, I., and Panias, D., "Behavior of Platinum Group Metals during Their Pyrometallurgical Recovery from Spent Automotive Catalysts," OAlib, 1, 1-9 (2014).
  6. Panda, R., Dinkar, O. S., Jha, M. K., and Pathak, D. D., "Recycling of Gold from Waste Electronic Components of Devices," Korean J. Chem. Eng., 37(1), 111-119 (2020). https://doi.org/10.1007/s11814-019-0412-x
  7. Nguyen, T. H., Kumar, B. N., and Lee, M. S., "Selective Recovery of Fe(III), Pd(II), Pt(IV), Rh(III) and Ce(III) from Simulated Leach Liquors of Spent Automobile Catalyst by Solvent Extraction and Cementation," Korean J. Chem. Eng., 33(9), 2684-2690 (2016). https://doi.org/10.1007/s11814-016-0123-5
  8. Kim, J. S., Kwon, J. S., Baek, J. H., and Lee, M. S., "Recovery of Palladium (Pd) from Spent Catalyst by Dry and Wet Method and Re-preparation of Pd/C Catalyst from Recovered Pd," Appl. Chem. Eng., 29(4), 376-381 (2018). https://doi.org/10.14478/ACE.2018.1022
  9. Behnamfard, A., Salarirad, M. M., and Veglio, F., "Process Development for Recovery of Copper and Precious Metals from Waste Printed Circuit Boards with Emphasize on Palladium and Gold Leaching and Precipitation," Waste Manag., 33(11), 2354-2363 (2013). https://doi.org/10.1016/j.wasman.2013.07.017
  10. Harjanto, S., Cao, Y., Shibayama, A., Naitoh, I., Nanami, T., Kasahara, K., Okumura, Y., Liu, K., and Fujita, T., "Leaching of Pt, Pd and Rh from Automotive Catalyst Residue in Various Chloride Based Solutions," Mater. Trans., 47(1), 129-135 (2006). https://doi.org/10.2320/matertrans.47.129
  11. Angelidis, T. N., "Development of a Laboratory Scale Hydrometallurgical Procedure for the Recovery of Pt and Rh from Spent Automotive Catalysts," Top. Catal., 16(1-4), 419-423 (2001). https://doi.org/10.1023/A:1016641906103
  12. Palliyarayil, A., Jayakumar, K. K., Sil, S., and Kumar, N. S., "A Facile Green Tea Assisted Synthesis of Palladium Nanoparticles Using Recovered Palladium from Spent Palladium Impregnated Carbon," Johnson Matthey Technol. Rev., 62(1), 60-73 (2018). https://doi.org/10.1595/205651317x696252
  13. Lu, J., Dreisinger, D. B., and Cooper, W. C., "Cobalt Precipitation by Reduction with Sodium Borohydride," Hydrometallurgy, 45(3), 305-322 (1997). https://doi.org/10.1016/S0304-386X(96)00086-2
  14. Trinh, H. B., Lee, J. C., Srivastava, R. R., Kim, S., and Ilyas, S., "Eco-Threat Minimization in HCl Leaching of PGMs from Spent Automobile Catalysts by Formic Acid Prereduction," ACS Sustain. Chem. Eng., 5(8), 7302-7309 (2017). https://doi.org/10.1021/acssuschemeng.7b01538
  15. Chen, J. P., and Lim, L. L., "Key Factors in Chemical Reduction by Hydrazine for Recovery of Precious Metals," Chemosphere, 49(4), 363-370 (2002). https://doi.org/10.1016/S0045-6535(02)00305-3
  16. Byun, M. Y., Kim, J. S., Baek, J. H., Park, D. W., and Lee, M. S., "Liquid-Phase Hydrogenation of Maleic Acid over Pd/Al2O3 Catalysts Prepared via Deposition-Precipitation Method," Energies, 12(2), 284 (2019). https://doi.org/10.3390/en12020284
  17. So, H. I., Lee, J. E., Cho, Y. C., Ahn, J. W., and Ryu, H. J., "Leaching of Silver (Ag) from Electronic Scrap by Thiourea," Korean J. Met. Mater., 56(7), 511-517 (2018). https://doi.org/10.3365/kjmm.2018.56.7.511
  18. Izatt, R. M., Eatough, D., and Christensen, J. J., "A study of Pd2+(aq) Hydrolysis. Hydrolysis Constants and the Standard Potential for the Pd, Pd2+ couple," J. Chem. Soc. A, 1301-1304 (1967).
  19. Ding, Y., Zheng, H., Li, J., Zhang, S., Liu, B., and Ekberg, C., "An Efficient Leaching of Palladium from Spent Catalysts through Oxidation with Fe(III)," Materials, 12(8), 1205 (2019). https://doi.org/10.3390/ma12081205
  20. Awadalla, F. T., Molnar, R. E., and Riteey, G. M., "Recovery of Platinum Group Metals (PGM) from Acidic Solutions by Reduction Precipitation with Sodium Borohydride,"U.S. Patent No. 5,304,233 (1994).
  21. Salinas-Rodriguez, E., Hernandez-Avila, J., Rivera-Landero, I., Cerecedo-Saenz, E., IsabelReyes-Valderrama, M. I., Correa-Cruz, M., and Rubio-Mihi, D., "Leaching of Silver Contained in Mining Tailings, Using Sodium Thiosulfate: A Kinetic Study," Hydrometallurgy, 160, 6-11 (2016). https://doi.org/10.1016/j.hydromet.2015.12.001
  22. Xie, H., Zhang, L., Li, H., Koppala, S., Yin, S., Li, S., Yang, K., and Zhu, F., "Efficient Recycling of Pb from Zinc Leaching Residues by Using the Hydrometallurgical Method," Mater. Res. Express, 6(7), 075505 (2019). https://doi.org/10.1088/2053-1591/ab11b9
  23. Paiva, A. P., Ortet, O., Carvalho, G. I., and Nogueira, C. A., "Recovery of Palladium from a Spent Industrial Catalyst through Leaching and Solvent Extraction," Hydrometallurgy, 171, 394-401 (2017). https://doi.org/10.1016/j.hydromet.2017.06.014
  24. Wu, J., Ahn, J., and Lee, J., "Comparative Leaching Study on Conichalcite and Chalcopyrite under Different Leaching Systems," Korean J. Met. Mater., 57(4), 245-250 (2019). https://doi.org/10.3365/kjmm.2019.57.4.245
  25. Cao, Y., Harijanto, S., Shibayama, A., Naitoh, I., Nanami, T., Kasahara, K., Okumura, Y., and Fujita, T., "Kinetic Study on the Leaching of Pt, Pd and Rh from Automotive Catalyst Residue by Using Chloride Solutions," Mater. Trans., 47(8), 2015-2024 (2006). https://doi.org/10.2320/matertrans.47.2015
  26. Lefevre, G., Duc, M., Lepeut, P., Caplain, R., and Fedoroff, M., "Hydration of γ-Alumina in Water and Its Effects on Surface Reactivity", Langmuir, 18(20), 7530-7537 (2002). https://doi.org/10.1021/la025651i
  27. Dash, B., Das, B. R., Tripathy, B. C., Bhattacharya, I. N., and Das, S. C., "Acid Dissolution of Alumina from Waste Aluminium Dross", Hydrometallurgy, 92(1-2), 48-53 (2008). https://doi.org/10.1016/j.hydromet.2008.01.006
  28. Puigdomenech, I., https://www.kth.se/che/medusa/downloads-1.386254 (accessed Nov. 2020)
  29. Ojeda M., and Iglesia, E., "Formic Acid Dehydrogenation on Au-Based Catalysts at Near-Ambient Temperatures," Angew. Chem., 121(26), 4894-4897. https://doi.org/10.1002/ange.200805723
  30. Gopinath, R., Babu, N. S., Kumar, J. V., Lingaiah, N., and Prasad, P. S. S., "Influence of Pd Precursor and Method of Preparation on Hydrodechlorination Activity of Alumina Supported Palladium Catalysts," Catal. Lett., 120(3-4), 312-319 (2008). https://doi.org/10.1007/s10562-007-9287-2
  31. Balint, I., Miyazaki, A., and Aika, K., "Alumina Dissolution during Impregnation with PdCl42- in the Acid pH Range," Chem. Mater., 13(3), 932-938 (2001). https://doi.org/10.1021/cm000693i
  32. Lee, W. J., Hwang, Y. J., Kim, J., Jeong, H., and Yoon, C. W., "Pd2+-Initiated Formic Acid Decomposition: Plausible Pathways for C-H Activation of Formate," ChemPhysChem, 20(10), 1382-1391 (2019). https://doi.org/10.1002/cphc.201801088
  33. Xu, L., Wu, X. C., and Zhu, J. J., "Green Preparation and Catalytic Application of Pd Nanoparticles," Nanotechnology, 19(30), 305603 (2008). https://doi.org/10.1088/0957-4484/19/30/305603
  34. Debye, P., "Zerstreuung von Rontgenstrahlen," Ann. Phys. 351(6), 809-823 (1915). https://doi.org/10.1002/andp.19153510606
  35. Centomo, P., Canton, P., Burato, C., Meneghini, C., and Zecca, M., "Resonant-XRD Characterization of Nanoalloyed Au-Pd catalysts for the Direct Synthesis of H2O2: Quantitative Analysis of Size Dependent Composition of the Nanoparticles", Appl. Sci., 9(15), 2959 (2019). https://doi.org/10.3390/app9152959