DOI QR코드

DOI QR Code

Factors affecting the formation of bound 3-monochloropropane-1,2-diol in a fried snack model

유탕 과자 모델에서 결합형 3-monochloropropane-1,2-diol 생성에 영향을 미치는 요인

  • 강준혁 (단국대학교 식품공학과) ;
  • 정우영 (단국대학교 식품공학과) ;
  • 노회진 ((주)오리온 글로벌연구소) ;
  • 백형희 (단국대학교 식품공학과)
  • Received : 2020.08.18
  • Accepted : 2020.10.10
  • Published : 2020.12.31

Abstract

The 3-monochloropropane-1,2-diol (3-MCPD) is a contaminant that occurs in foodstuffs in its free form as well as in its bound form. The objective of this study was to evaluate the effects of emulsifier, frying temperature, and the amounts of salt and oil on the formation of bound 3-MCPD in a fried snack model. Emulsifier affected the formation of bound 3-MCPD; furthermore, it was observed that the largest amount of bound 3-MCPD was detected in the fried snack model when glycerin esters of fatty acids were used as emulsifiers. Frying temperature also affected the formation of bound 3-MCPD, which increased significantly as the frying temperature increased from 145 to 190℃. In addition, salt affected the formation of bound 3-MCPD. As the amount of salt increased, the amount of bound 3-MCPD also increased significantly. Moreover, it was observed that the amount of oil did not affect the formation of bound 3-MCPD. These results will aid in the reduction of bound 3-MCPD in fried snacks.

본 연구에서는 유탕 과자 모델에서 4가지 요인(유화제 종류, 유탕 온도, 소금 함량, 유지 함량)이 결합형 3-MCPD의 생성에 미치는 영향에 대해 알아보았다. 먼저 3-MCPD 분석법 검증을 위해 검출한계, 정량한계, 직선성, 정밀성 및 정확성을 구하였고, 분석 시 흡착 컬럼으로 사용한 aluminum oxide와 Extrelut® NT-3 컬럼을 비교하였다. Aluminum oxide에 비해 Extrelut® NT-3 컬럼으로 추출하였을 때 피크 면적이 약 5배 더 높아, 흡착 컬럼으로 Extrelut® NT-3를 사용하는 방법이 3-MCPD 분석에 더 적합할 것으로 생각되었다. 직선성은 3-MCPD 표준용액 검량선의 상관계수가 0.9997 이상의 양호한 직선성을 보였다. 기기의 검출한계는 0.86 ng/mL, 정량 한계는 2.61 ng/mL이었다. 분석법의 정밀성 및 정확성은 과자 반죽을 이용하여 비교하였다. 3-MCPD 분석법의 일내 정확성은 81.3-94.0%, 일간 정확성은 82.1-89.0% 수준이었으며, 결합형 3-MCPD 분석법의 일내 정확성은 84.1-99.3%, 일간 정확성은 87.7-91.1% 수준이었다. 3-MCPD 분석법의 일내 정밀성은 1.5-7.8% RSD, 일간 정밀성은 1.1-5.6% RSD 수준이었으며, 결합형 3-MCPD 분석법의 일내 정밀성은 2.8-8.9% RSD, 일간 정밀성은 5.0-6.8% RSD 수준이었다. 유탕 과자 모델에서 유화제 종류는 결합형 3-MCPD 생성에 영향을 주어 유화제 6종 중 글리세린지방산에스테르를 첨가한 시료에서 가장 많은 결합형 3-MCPD가 검출되었다. 유탕 온도에 따른 결합형 3-MCPD 생성량을 분석한 결과 온도가 증가함에 따라 결합형 3-MCPD의 함량도 증가하였다. 190℃로 가열하였을때 145℃에 비해 결합형 3-MCPD 함량은 약 24배 높았다. 소금 함량 또한 결합형 3-MCPD 생성에 영향을 주어 소금 함량에 비례하여 결합형 3-MCPD의 생성량이 유의적으로 증가하였다. 유지 함량에 따른 결합형 3-MCPD 생성량을 분석한 결과 유지 함량이 증가하여도 결합형 3-MCPD의 생성량에는 유의적인 차이가 없었다. 본 연구를 통해 유탕 과자에서 유화제 종류, 유탕 온도와 소금 함량이 결합형 3-MCPD의 생성에 영향을 미치는 것으로 확인되었다.

Keywords

References

  1. ANZFA. Maximum limit for chloropropanols in soy and oyster sauces. Available from: http://www.foodstandards.gov.au/code/proposals/documents/P243_FAR.pdf. Accessed Nov. 20, 2018.
  2. BfR. Infant formula and follow-up formula may contain harmful 3-MCPD fatty acid esters, BfR Opinion No. 047/2007, 11 December. Available from: https://www.bfr.bund.de/cm/349/infant_formula_and_follow_up_formula_may_contain_harmful_3_mcpd_fatty_acid_esters.pdf. Accessed Nov. 20, 2018.
  3. Breitling-Utzmann CM, Hrenn H, Haase NU, Unbehend GM. Influence of dough ingredients on 3-chloropropane-1, 2-diol (3-MCPD) formation in toast. Food Addit. Contam. 22: 97-103(2005) https://doi.org/10.1080/02652030500037936
  4. Chai Q, Hayat K, Karangwa E, Duhoranimana E, Zhang X, Xia S, Yu J. Investigating the optimum conditions for minimized 3-chloropropane-1, 2-diol esters content and improved sensory attributes during savory beef flavor preparation. Food Chem. 243: 96-102 (2018) https://doi.org/10.1016/j.foodchem.2017.09.113
  5. Divinova V, Svejkovska B, Dolezal M. Determination of free and bound 3-chloropropane-1, 2-diol by gas chromatography with mass spectrometric detection using deuterated 3-chloropropane-1, 2-diol as internal standard. Czech J. Food Sci. (Czech Republic) (2004)
  6. FAO. Request for comments to the draft maximum levels for 3-MCPD in liquid condiments containing acid-hydrolyzed vegetable proteins (excluding naturally fermented soy sauce) (N08-2004). Available from: http://www.fao.org/tempref/codex/Circular_Letters/CxCL2007/cl07_29e.pdf. Accessed Nov. 20, 2018.
  7. Government of Canada. Health canada's maximum levels for chemical contaminants in foods. Available from: https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/chemical-contaminants/maximum-levels-chemical-contaminants-foods.html#a1. Accessed Nov. 20, 2018.
  8. HHS. Guidelines for the validation of chemical methods for the FDA FVM program (2015)
  9. Homonnai ZT, Paz G, Sofer A, Yedwab GA, Kraicer PF. A direct effect of α-chlorohydrin on motility and metabolism of ejaculated human spermatozoa. Contraception 12: 579-588 (1975) https://doi.org/10.1016/0010-7824(75)90019-0
  10. IARC. Agents classified by the IARC monographs, Volumes 101. Available from: https://monographs.iarc.fr/wp-content/uploads/2018/06/mono 101-010.pdf. Accessed Nov. 17, 2018.
  11. JECFA. Evaluation of certain food additives and contaminants (Fiftyseventh report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Technical Report Series, No. 909 (2002)
  12. JECFA. Evaluation of certain contaminants in food (Eighty-third report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Technical Report Series, No. 1002 (2017)
  13. Jones AR. The metabolism of 3-chloro-, 3-bromo-and 3-iodopropan1, 2-diol in rats and mice. Xenobiotica 5: 155-165 (1975) https://doi.org/10.3109/00498257509056101
  14. Jones AR, Porter K, Stevenson D. The renal toxicity of some halogenated derivatives of propane in the rat. Naturwissenschaften 68: 98-99 (1981)
  15. Lanner DA, Chang DS-J, Hsieh Y-PC. Fried snack. Google Patents (2000)
  16. Larsen JC. 3-MCPD esters in food products. Summary Report of a Workshop held in February 2009 in Brussels, Belgium (2009)
  17. MFDS. Guidelines on standard procedures for preparing analysis method. B2-2016-1-001 (2016)
  18. OEHHA. 3-monochloropropane-1,2-diol (3-MCPD; α-chlorohydrin) California Environmental Protection Agency. Available from: https://oehha .ca.gov/media/downloads/proposition-65/crnr/comments/ihpc3mcpd.pdf. Accessed Nov. 19, 2018.
  19. Official Journal of the European Union (OJ). Setting maximum levels for certain contaminants in foodstuffs. Available from: https://eurlex.europa.eu/eli/reg/2006/1881/oj. Accessed Nov 19, 2018.
  20. Reece P. The origin and formation of 3-MCPD in foods and food ingredients (final project report). Food Stand. Agency, London (2005)
  21. Sadowska-Rociek A, Cielik E, Sieja K. Mitigation role of erythritol and xylitol in the formation of 3-monochloropropane-1, 2-diol and its esters in glycerol and shortbread model systems. Eur. Food Res. Technol. 243: 2055-2063 (2017) https://doi.org/10.1007/s00217-017-2916-0
  22. Seefelder W, Varga N, Studer A, Williamson G, Scanlan FP, Stadler RH. Esters of 3-chloro-1, 2-propanediol (3-MCPD) in vegetable oils: significance in the formation of 3-MCPD. Food Addit. Contam. 25: 391-400 (2008) https://doi.org/10.1080/02652030801920582
  23. Shimizu M, Vosmann K, Matthus B. Generation of 3-monochloro-1, 2-propanediol and related materials from tri-, di-, and monoolein at deodorization temperature. Eur. J. Lipid Sci. Tech. 114: 1268-1273 (2012) https://doi.org/10.1002/ejlt.201200078
  24. Tiong SH, Saparin N, Teh HF, Ng TLM, Md. Zain MZ bin, Neoh BK, Md Noor A, Tan CP, Lai OM, Appleton DR. Natural organochlorines as precursors of 3-monochloropropanediol esters in vegetable oils. J. Agric. Food Chem. 66: 999-1007 (2018) https://doi.org/10.1021/acs.jafc.7b04995
  25. Velisek J, Calta P, Dolezal M, Crews C, Hasnip S. 3-Chloropropane1, 2-diol in models simulating processed foods: precursors and agents causing its decomposition. Czech J. Food Sci. 21: 153-161 (2003) https://doi.org/10.17221/3493-cjfs
  26. Velisek J, Davidek J, Hajlov J, Kubelka V, Janek G, Mnkov B. Chlorohydrins in protein hydrolysates. Z. Lebensm. Unters. For. 167: 241-244 (1978) https://doi.org/10.1007/BF01135595
  27. WeiBhaar R. Fatty acid esters of 3-MCPD: Overview of occurrence and exposure estimates. Eur. J. Lipid Sci. Tech. 113: 304-308 (2011) https://doi.org/10.1002/ejlt.201000312
  28. Woo S, Oh JH, Jang YM, Kim MH. Analysis method development for bound-MCPD. J. Food Hyg. Saf. 25: 294-302 (2010)
  29. Yang S, Kwon K, Choi J, Jo C H. Improvement of a GC­MS analytical method for the simultaneous detection of 3-MCPD and 1,3-DCP in food. Food Sci. Biotechnol. 27(3): 859-866 (2018) https://doi.org/10.1007/s10068-018-0312-6
  30. Zelinkov Z, Doleal M, Velek J. Occurrence of 3-chloropropane-1, 2-diol fatty acid esters in infant and baby foods. Eur. Food Res. Technol. 228: 571-578 (2009) https://doi.org/10.1007/s00217-008-0965-0
  31. Zelinkov Z, Novotn O, Schrek J, Velek J, Hajlov J, Doleal M. Occurrence of 3-MCPD fatty acid esters in human breast milk. Food Addit. Contam. 25: 669-676 (2008) https://doi.org/10.1080/02652030701799375
  32. Zelinkov Z, Svejkovsk B, Velek J, Doleal M. Fatty acid esters of 3-chloropropane-1, 2-diol in edible oils. Food Addit. Contam. 23: 1290-1298 (2006) https://doi.org/10.1080/02652030600887628
  33. Zhao Y, Zhang Y, Zhang Z, Liu J, Wang YL, Gao B, Niu Y, Sun X, Yu L. Formation of 3-MCPD fatty acid esters from monostearoyl glycerol and the thermal stability of 3-MCPD monoesters. J. Agric. Food Chem. 64: 8918-8926 (2016) https://doi.org/10.1021/acs.jafc.6b04048