DOI QR코드

DOI QR Code

고아밀로스 옥수수전분/덱스트린의 첨가가 건면의 품질에 미치는 영향

Effect of high amylose corn starch/dextrin on quality of non-fried instant noodles

  • 유재근 (고려대학교 생명과학대학 생명공학과) ;
  • 이주헌 (신한대학교 식품조리과학부) ;
  • 박은영 (고려대학교 생명과학대학 생명공학과)
  • You, Jae Geun (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Ju Hun (Division of Food Science & Culinary arts, Shinhan University) ;
  • Park, Eun Young (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
  • 투고 : 2020.11.06
  • 심사 : 2020.11.18
  • 발행 : 2020.12.31

초록

본 연구를 통해 고아밀로스 옥수수 전분과 이를 가수분해한 덱스트린을 첨가함으로써 건면의 품질에 미치는 영향을 살펴보았다. 고아밀로스 전분이나 덱스트린을 첨가함으로써, 아밀로스-지질 복합체가 형성되었지만, 그 정도가 미미한 편이었다. 고아밀로스 전분이나 덱스트린을 건면에 첨가함으로써, 수분 흡수율과 인장강도가 감소하고, 경도와 점착력이 증가하는 경향을 보였다. 또한 고아밀로스 전분이나 덱스트린 첨가 건면의 단면이 조금 더 밀집한 구조를 보이게 되었다. 하지만 가수분해정도가 큰 Dextrin50의 경우에는 다른 덱스트린과는 다르게 용출율을 증가시키고, 느슨한 구조의 단면을 보였다. 이는 건면의 조직감에도 영향을 미쳐, Dextrin50 첨가군은 다른 첨가군보다 더 낮은 탄성과 경도를 보이고 점착력이 증가하는 특성을 보이게 된다. 본 연구결과에 따르면, 고아밀로스 옥수수 전분과 덱스트린을 건면에 첨가했을 때, 명확한 아밀로스-지질 복합체가 형성되지는 못했지만, 수분흡수율, 용출율 미세구조, 조직감에 영향을 주었다고 판단된다.

High amylose corn starch and dextrin (acid-treated at 30, 40 and 50℃ denominated as Dextrin30, Dextrin40 and Dextrin50) were added to non-fried instant noodles. X-ray diffraction pattern, water absorption, cooking loss, microstructure, and textural properties of non-fried instant noodles were investigated. The addition of high amylose corn starch/dextrin induced a slight peak intensity at 20o in the X-ray pattern indicating the insignificant formation of amylose-lipid complex. Non-fried instant noodles including high amylose corn starch/dextrin showed lower water absorption than the control. Dense microstructure in transverse section of noodles was observed in non-fried instant noodles including high amylose corn starch/dextrin except Dextrin50. Also, the addition of high amylose corn starch/dextrin induced low tensile strength, high firmness, and high stickiness. However, non-fried instant noodles containing Dextrin50 showed a loose microstructure and high cooking loss (3.98%), which might be associated with the textural properties such as the lowest tensile strength (0.17 N), lowest increase in firmness (46.77 N) and highest stickiness (18.43 N).

키워드

참고문헌

  1. Becker A, Hill SE, Mitchell JR. Relevance of amylose-lipid complexes to the behaviour of thermally processed starches. Starch-Starke. 53: 121-130 (2001) https://doi.org/10.1002/1521-379X(200104)53:3/4<121::AID-STAR121>3.0.CO;2-Q
  2. Chen X, He X, Fu X, Zhang B, Huang Q. Complexation of rice starch/flour and maize oil through heat moisture treatment: Structural, in vitro digestion and physicochemical properties. Int. J. Biol. Macromol. 98: 557-564 (2017) https://doi.org/10.1016/j.ijbiomac.2017.01.105
  3. Dubois M, Gilles KA, Hamilton JK, Rebers Pt, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 (1956) https://doi.org/10.1021/ac60111a017
  4. Edwards NM, Dexter JE, Scanlon MG. Starch participation in durum dough linear viscoelastic properties. Cereal Chem. 79: 850-856 (2002) https://doi.org/10.1094/CCHEM.2002.79.6.850
  5. Godet MC, Buleon A, Tran V, Colonna P. Structural features of fatty acid-amylose complexes. Carbohydr. Polym. 21: 91-95 (1993) https://doi.org/10.1016/0144-8617(93)90003-M
  6. Gulia N, Dhaka V, Khatkar BS. Instant noodles: processing, quality, and nutritional aspects. Crit. Rev. Food Sci. Nutr. 54: 1386-1399 (2014) https://doi.org/10.1080/10408398.2011.638227
  7. Huang YC, Lai HM. Noodle quality affected by different cereal starches. J. Food Eng. 97: 135-143 (2010) https://doi.org/10.1016/j.jfoodeng.2009.10.002
  8. Pronyk C, Cenkowski S, Muir WE, Lukow OM. Effects of superheated steam processing on the textural and physical properties of asian noodles. Dry Technol. 26: 192-203 (2008) https://doi.org/10.1080/07373930701831382
  9. Seo TR, Kim JY, Lim ST. Preparation and characterization of crystalline complexes between amylose and C18 fatty acids. LWT-Food Sci. Technol. 64: 889-897 (2015) https://doi.org/10.1016/j.lwt.2015.06.021
  10. Tufvesson F, Wahlgren M, Eliasson AC. Formation of amylose-lipid complexes and effects of temperature treatment. Part 2. Fatty acids. Starch-Starke. 55: 138-149 (2003) https://doi.org/10.1002/star.200390028
  11. Wang L, Hou GG, Hsu YH, Zhou L. Effect of phosphate salts on the Korean non-fried instant noodle quality. J. Cereal Sci. 54: 506-512 (2011a) https://doi.org/10.1016/j.jcs.2011.09.008
  12. Wang L, Hou GG, Hsu YH, Zhou L. Effect of phosphate salts on the pasting properties of Korean instant-fried noodle. Cereal Chem. 88: 142-146 (2011b) https://doi.org/10.1094/CCHEM-07-10-0105
  13. Whitney K, Simsek S. Potato flour as a functional ingredient in bread: evaluation of bread quality and starch characteristics. Int. J. Food Sci. Technol. In press (2020).
  14. WINA (World Instant Noodle Association). Global aggregate demand: Global total demand for instant noodles. Availale from: https://instantnoodles.org/jp/noodles/market.html. Accessed May. 11, 2020.
  15. Yang Y, Wang L, Li Y, Qian HF, Zhang H, Cheng WuG, Qi XG. Investigation the molecular degradation, starch-lipid complexes formation and pasting properties of wheat starch in instant noodles during deep-frying treatment. Food Chem. 283: 287-293 (2019) https://doi.org/10.1016/j.foodchem.2019.01.034
  16. Zhou M, Xiong Z, Cai J, Xiong H. Convective air drying characteristics and qualities of non-fried instant noodles. Int. J. Food Eng. 11: 851-860 (2015a) https://doi.org/10.1515/ijfe-2015-0108
  17. Zhou M, Xiong Z, Cai J, Xiong H. Effect of cross-linked waxy maize starch on the quality of non-fried instant noodles. StarchStarke. 67: 1035-1043 (2015b) https://doi.org/10.1002/star.201500132