DOI QR코드

DOI QR Code

Study on the Front Detection Techniques by using Satellite Data

위성 자료를 이용한 전선 탐지 기법 연구

  • 황도현 (부경대학교 지구환경시스템과학부) ;
  • 박수호 (부경대학교 지구환경시스템과학부) ;
  • 엥흐자리갈 운자야 (부경대학교 지구환경시스템과학부) ;
  • 정민지 (부경대학교 지구환경시스템과학부) ;
  • 김나경 (부경대학교 지구환경시스템과학부) ;
  • 박미소 (부경대학교 지구환경시스템과학부) ;
  • 김보람 (부경대학교 지구환경시스템과학부) ;
  • 윤홍주 (부경대학교 공간정보시스템공학과)
  • Received : 2020.10.30
  • Accepted : 2020.12.15
  • Published : 2020.12.31

Abstract

A mass of seawater with similar properties in the ocean is called a water mass, and the front is a sea area where two masses of different properties meet. The gradient algorithm is a method of extracting where the sea water temperature pixel changes rapidly assuming that the slope is large, and the place with the large slope is assumed to be a front. This method is able to process large amounts of satellite data at once. Therefore, in this study, we tried to find the front lines in the sea area around the Korean Peninsula by using a gradient algorithm. The study data used gridded sea surface temperature satellite data. The resolution was 1/4°, and the monthly average data from January 1993 to December 2018 were used. There were major five fronts representatively, China Coastal Front, South Sea Coastal Front, Kuroshio Front/ Kuroshio Extension Front, Subpolar Front and the Subarctic Front. As a result of comparing the distribution of front by season, more types of front were distributed in winter and spring than in summer and autumn, and the distribution range was wider.

해양에서 바닷물의 성질이 비슷한 바닷물 덩어리를 수괴라 하며, 전선은 서로 다른 속성의 두 수괴가 만나는 해역이다. 경사도 알고리즘은 해수면 온도 픽셀이 급격하게 변하는 곳을 경사가 크다고 보고, 경사가 큰 곳을 전선으로 가정하여 추출하는 방법이다. 이 방법은 대용량의 위성 자료를 한꺼번에 처리할 수 있다는 장점이 있다. 따라서 본 연구에서는 경사도 알고리즘을 이용하여 한반도 주변 해역의 전선을 찾아보고자 하였다. 연구 자료는 격자화 되어있는 해수면 온도 위성 자료를 이용하였다 해상도는 1/4°이며, 연구 기간은 1993년 1월부터 2018년 12월까지 월 평균 자료를 사용하였다. 해수면 온도 자료를 이용하여 전선 추출 결과 대표적으로 중국 연안 전선, 남해 연안 전선, 쿠로시오/쿠로시오 속류 전선, 아극 전선, 아북극 전선 등 다섯 개의 전선을 찾을 수 있었다. 계절별 전선 분포 비교 결과 겨울, 봄철에는 여름, 가을철에 비해 더 많은 종류의 전선이 분포하였으며, 분포 범위도 더 넓어졌다.

Keywords

References

  1. T. Yanagi, "Classification of "Siome", Streaks and Fronts," J. of the Oceanographical Society of Japan, vol. 43, no. 3, 1987, pp. 149-158. https://doi.org/10.1007/BF02109215
  2. R. J. Holyer and S. H. Peckinpaugh, "Edge detection applied to satellite imagery of the oceans," IEEE trans on geoscience and remote sensing, vol. 27, no. 1, 1989, pp. 46-56. https://doi.org/10.1109/36.20274
  3. J. F. Cayula and P. Cornillon, "Edge detection algorithm for SST images," J. of Atmospheric and Oceanic Technology, vol. 9, no. 1, 1992, pp. 67-80. https://doi.org/10.1175/1520-0426(1992)009<0067:EDAFSI>2.0.CO;2
  4. G. Kirches, M. Paperin, H. Klein, C. Brockmann, and K. Stelzer, "GRADHIST-A method for detection and analysis of oceanic fronts from remote sensing data," Remote Sensing of Environment, vol. 181, 2016, pp. 264-280. https://doi.org/10.1016/j.rse.2016.04.009
  5. GHRSST Science Team, The Recommended GHRSST Data Specification (GDS) Revision 2.0 Technical Specifications, GHRSST International Project Office, 2010.
  6. W. Baek and H. Lee, "A Modified Top-hat and Bottom-hat transform for Edge Detection," J. of the Korea Institute of Electronics Communication Sciences, vol. 11, no. 9, 2016, pp. 901-908. https://doi.org/10.13067/JKIECS.2016.11.9.901
  7. K. Kim and Y. Woo, "Detection of Flaws in Ceramic Materials Using Non-Destructive Testing," J. of the Korea Institute of Electronics Communication Sciences, vol. 5, no. 3, 2010, pp. 321-326.
  8. E. Kim and Y. Ro, "Improved Method for Feature Tracking Method in estimating Ocean Current Vectors from Sequential Satellite Imageries," J. of the Korean Society of Remote Sensing, vol. 16, no. 3, 2000, pp. 199-209.
  9. W. P. Budgell, Data Fusion Approaches for Merging Marine Remote Sensing Data, LIFECO Deliverables, 2003, pp.7-8.
  10. H. Yoon, H. Byun, and K. Park, "Temporal and spatial variations of SST and ocean fronts in the Korean Seas by empirical orthogonal function analysis," Korean J. of Remote Sensing, vol. 21, no. 3, 2005, pp. 213-219.
  11. D. R. Johnson and T. P. Boyer, Regional Climatology of the East Asian Seas: An Introduction, NOAA Atlas NESDIS 79, Silver Spring, 2015.
  12. I. M. Belkin and P. Cornillon, "SST fronts of the Pacific coastal and marginal seas," Pacific Oceanography, vol. 1., no. 2, 2003, pp.90-113.
  13. D. Hwang, H. Yoon, and W. Seo, "Study on Sea Level Changes in Korean Peninsula by Using Satellite Altimetry Data," J. of the Korea Institute of Electronics Communication Sciences, vol. 11, no. 3, 2016, pp.325-330. https://doi.org/10.13067/JKIECS.2016.11.3.325
  14. H. Ichikawa and R. C. Beardsley, "The current system in the Yellow and East China Seas," J. of Oceanography, vol. 58, no. 1, 2002, pp.77-92. https://doi.org/10.1023/A:1015876701363
  15. Y. Wang, X. Yang, and J. Hu, "Position varability of the Kuroshio Extension sea surface temperature front," Acta Oceanologica Sinica, vol. 35, no. 7, 2016, pp.30-35.
  16. I. Yasuda, "Hydrographic Structure and Variability in the Kuroshio-Oyashio Transition Area," J. of Oceanography, vol. 59, 2003, pp.389-402. https://doi.org/10.1023/A:1025580313836
  17. Y. Wei, Y. Pei, and R. Zhang, "Seasonal variability of the Kuroshio Current at the PN Section in the East China Sea based on in-situ observation from 1987 to 2010," Acta Oceanologica Sinica, vol. 34, no. 5, 2015, pp.12-21. https://doi.org/10.1007/s13131-015-0662-3
  18. T. Senjyu, "The Japan Sea Intermediate Water; its characteristics and circulation," J. of Oceanography, vol. 55, no. 2, 1999, pp.111-122. https://doi.org/10.1023/A:1007825609622