DOI QR코드

DOI QR Code

Effective Blocking of Microbial Transcriptional Initiation by dCas9-NG-Mediated CRISPR Interference

  • Kim, Bumjoon (Department of Systems Biotechnology, Chung-Ang University) ;
  • Kim, Hyun Ju (Department of Systems Biotechnology, Chung-Ang University) ;
  • Lee, Sang Jun (Department of Systems Biotechnology, Chung-Ang University)
  • Received : 2020.08.28
  • Accepted : 2020.09.20
  • Published : 2020.12.28

Abstract

CRISPR interference (CRISPRi) has been developed as a transcriptional control tool by inactivating the DNA cleavage ability of Cas9 nucleases to produce dCas9 (deactivated Cas9), and leaving dCas9 the ability to specifically bind to the target DNA sequence. CRISPR/Cas9 technology has limitations in designing target-specific single-guide RNA (sgRNA) due to the dependence of protospacer adjacent motif (PAM) (5'-NGG) for binding target DNAs. Reportedly, Cas9-NG recognizing 5'-NG as the PAM sequence has been constructed by removing the dependence on the last base G of PAM through protein engineering of Cas9. In this study, a dCas9-NG protein was engineered by introducing two active site mutations in Cas9-NG, and its ability to regulate transcription was evaluated in the gal promoter in E. coli. Analysis of cell growth rate, D-galactose consumption rate, and gal transcripts confirmed that dCas9-NG can completely repress the promoter by recognizing DNA targets with PAM of 5'-NGG, NGA, NGC, NGT, and NAG. Our study showed possible PAM sequences for dCas9-NG and provided information on target-specific sgRNA design for regulation of both gene expression and cellular metabolism.

Keywords

References

  1. Horvath P, Barrangou R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327: 167-170. https://doi.org/10.1126/science.1179555
  2. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-1712. https://doi.org/10.1126/science.1138140
  3. Terns MP, Terns RM. 2011. CRISPR-based adaptive immune systems. Curr. Opin. Microbiol. 14: 321-327. https://doi.org/10.1016/j.mib.2011.03.005
  4. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, et al. 2017. RNA editing with CRISPR-Cas13. Science 358: 1019-1027. https://doi.org/10.1126/science.aaq0180
  5. Anders C, Niewoehner O, Duerst A, Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513: 569-573. https://doi.org/10.1038/nature13579
  6. Mojica FJM, Diez-Villasenor C, Garcia-Martinez J, Almendros C. 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155: 733-740. https://doi.org/10.1099/mic.0.023960-0
  7. Marraffini LA, Sontheimer EJ. 2010. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463: 568-571. https://doi.org/10.1038/nature08703
  8. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. 2020. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther. 5: 1. https://doi.org/10.1038/s41392-019-0089-y
  9. Tian P, Wang J, Shen X, Rey JF, Yuan Q, Yan Y. 2017. Fundamental CRISPR-Cas9 tools and current applications in microbial systems. Synth. Syst. Biotechnol. 2: 219-225. https://doi.org/10.1016/j.synbio.2017.08.006
  10. Lee HJ, Kim HJ, Lee SJ. 2020. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs. Genome Res. 30: 768-775. https://doi.org/10.1101/gr.257493.119
  11. Kim HJ, Oh SY, Lee SJ. 2020. Single-base genome editing in Corynebacterium glutamicum with the help of negative selection by target-mismatched CRISPR/Cpf1. J. Microbiol. Biotechnol. 30: 1584-1592.
  12. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759-771. https://doi.org/10.1016/j.cell.2015.09.038
  13. Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, et al. 2019. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566: 218-223. https://doi.org/10.1038/s41586-019-0908-x
  14. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, et al. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523: 481-485. https://doi.org/10.1038/nature14592
  15. Hirano S, Nishimasu H, Ishitani R, Nureki O. 2016. Structural basis for the altered PAM specificities of engineered CRISPR-Cas9. Mol. Cell 61: 886-894. https://doi.org/10.1016/j.molcel.2016.02.018
  16. Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, et al. 2018. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361: 1259-1262. https://doi.org/10.1126/science.aas9129
  17. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152: 1173-1183. https://doi.org/10.1016/j.cell.2013.02.022
  18. Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. 2013. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8: 2180-2196. https://doi.org/10.1038/nprot.2013.132
  19. Lee N, Hwang S, Lee Y, Cho S, Palsson B, Cho BK. 2019. Synthetic biology tools for novel secondary metabolite discovery in Streptomyces. J. Microbiol. Biotechnol. 29: 667-686. https://doi.org/10.4014/jmb.1904.04015
  20. Cleto S, Jensen JV, Wendisch VF, Lu TK. 2016. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth. Biol. 5: 375-385. https://doi.org/10.1021/acssynbio.5b00216
  21. Huang CH, Shen CR, Li H, Sung LY, Wu MY, Hu YC. 2016. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942. Microb. Cell Fact. 15: 196. https://doi.org/10.1186/s12934-016-0595-3
  22. Zhao C, Shu X, Sun B. 2017. Construction of a gene knockdown system based on catalytically inactive ("Dead") Cas9 (dCas9) in Staphylococcus aureus. Appl. Environ. Microbiol. 83: e00291-17.
  23. Kim B, Kim HJ, Lee SJ. 2020. Regulation of microbial metabolic rates using CRISPR interference with expanded PAM sequences. Front. Microbiol. 11: 282. https://doi.org/10.3389/fmicb.2020.00282
  24. Kim HJ, Hou BK, Lee SG, Kim JS, Lee DW, Lee SJ. 2013. Genome-wide analysis of redox reactions reveals metabolic engineering targets for D-lactate overproduction in Escherichia coli. Metab. Eng. 18: 44-52. https://doi.org/10.1016/j.ymben.2013.03.004
  25. Li XT, Jun Y, Erickstad MJ, Brown SD, Parks A, Court DL, et al. 2016. tCRISPRi: tunable and reversible, one-step control of gene expression. Sci. Rep. 6: 39076. https://doi.org/10.1038/srep39076
  26. Mekler V, Kuznedelov K, Severinov K. 2020. Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences. J. Biol. Chem. 295: 6509-6517. https://doi.org/10.1074/jbc.ra119.012239
  27. Zhang Y, Ge X, Yang F, Zhang L, Zheng J, Tan X, et al. 2014. Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci. Rep. 4: 5405. https://doi.org/10.1038/srep05405
  28. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645. https://doi.org/10.1073/pnas.120163297

Cited by

  1. Mismatch Intolerance of 5′-Truncated sgRNAs in CRISPR/Cas9 Enables Efficient Microbial Single-Base Genome Editing vol.22, pp.12, 2020, https://doi.org/10.3390/ijms22126457
  2. Advances in Accurate Microbial Genome-Editing CRISPR Technologies vol.31, pp.7, 2021, https://doi.org/10.4014/jmb.2106.06056