DOI QR코드

DOI QR Code

Production of 4-Hydroxybenzyl Alcohol Using Metabolically Engineered Corynebacterium glutamicum

대사공학에 의해 개발된 코리네박테리움 글루타미컴에 의한 4-히드록시벤질 알코올 생산

  • Kim, Bu-Yeon (Major in Food Biotechnology, School of Food Biotechnology and Nutrition, Kyungsung University) ;
  • Jung, Hye-Bin (GeneChem Inc.) ;
  • Lee, Ji-Yeong (Major in Food Biotechnology, School of Food Biotechnology and Nutrition, Kyungsung University) ;
  • Ferrer, Lenny (Faculty of Biology, Bielefeld University) ;
  • Purwanto, Henry Syukur (Major in Food Biotechnology, School of Food Biotechnology and Nutrition, Kyungsung University) ;
  • Lee, Jin-Ho (Major in Food Biotechnology, School of Food Biotechnology and Nutrition, Kyungsung University)
  • 김부연 (경성대학교 식품응용공학부 식품생명공학전공) ;
  • 정혜빈 ((주)진켐) ;
  • 이지영 (경성대학교 식품응용공학부 식품생명공학전공) ;
  • 페러 레니 (빌레펠트대학교 생물학부) ;
  • 푸완토 헨리 슈쿠르 (경성대학교 식품응용공학부 식품생명공학전공) ;
  • 이진호 (경성대학교 식품응용공학부 식품생명공학전공)
  • Received : 2020.10.16
  • Accepted : 2020.11.05
  • Published : 2020.12.28

Abstract

4-Hydroxybenzyl alcohol (4-HB alcohol) is one of the major active components of Gastrodia elata Blume, with beneficial effects on neurological disorders such as headache, convulsive behavior, and dizziness. Here, we developed a metabolically engineered Corynebacterium glutamicum strain able to produce 4-HB alcohol from 4-hydroxybenzoate (4-HBA). First, the strain APS963 was obtained from the APS809 strain via the insertion of aroK from Methanocaldococcus jannaschii into the NCgl2922-deleted locus. As carboxylic acid reductase from Nocardia iowensis catalyzes the reduction of 4HBA to 4-hydroxybenzaldehyde (4-HB aldehyde), we then introduced a codon-optimized car gene into the genome of APS963, generating the GAS177 strain. Then, we deleted creG coding for a putative short-chain dehydrogenase and inserted ubiCpr encoding a product-resistant chorismate-pyruvate lyase into the pcaHG-deleted locus. The resulting engineered GAS355 strain accumulated 2.3 g/l 4-HB alcohol with 0.32 g/l 4-HBA and 0.3 g/l 4-HB aldehyde as byproducts from 8% glucose after 48 h of culture.

4-Hydroxybenzyl alcohol (4-HB alcohol)은 두통, 경련 행동, 현기증과 같은 신경계 질환에 유익한 효과를 나타내며 천마의 주요 생리활성 성분 중의 하나이다. 대사공학을 통해 4-hydroxybenzoate (4-HBA)를 생산하는 균주로부터 4-HB alcohol을 생산하는 재조합 Corynebacterium glutamicum을 개발하였다. 먼저 4-HBA를 생산하는 APS809로부터 염색체 내 NCgl2922 유전자에 Methanocaldococcus jannaschii 유래의 aroK 유전자를 삽입한 APS963을 개발하였다. 4-HBA의 카로복실 산을 4-hydroxybenzaldehyde (4-HB aldehyde)로의 환원을 촉매하는 Nocardia iowensis 유래의 car 유전자를 염색체에서 발현하는 균주를 개발하기 위해 NCgl1112 유전자 일부 단편에 car 유전자가 삽입된 GAS177를 개발하였다. 더 높은 농도의 4-HB alcohol을 생산하기 위해 4-HB alcohol을 aldehyde로 산화를 촉매하는데 관여하는 creG 유전자를 염색체상에서 제거된 GAS255를 개발하였다. 최종적으로 chorismate를 4-HBA로 전환하는 효소의 유전자 ubiCpr을 pcaHG에 삽입된 GAS355를 개발하였으며, 80 g/l 포도당을 함유한 삼각플라스크에서 발효하여 생산성을 평가한 결과, 2.3 g/l 4-HB alcohol이 생산되었으며 부산물로 0.32 g/l 4-HBA, 0.3 g/l 4-HB aldehyde가 축적되었다.

Keywords

References

  1. Liu Y, Gao J, Peng M, Meng H, Ma H, Cai P, et al. 2018. A review on central nervous system effects of gastrodin. Front. Pharmacol. 9: 24. https://doi.org/10.3389/fphar.2018.00024
  2. Luo L, Kim SW, Lee HK, Kim ID, Lee H, Lee JK. 2017. Anti-oxidative effects of 4-hydroxybenzyl alcohol in astrocytes confer protective effects in autocrine and paracrine manners. PLoS One 12: e0177322. https://doi.org/10.1371/journal.pone.0177322
  3. Bai Y, Yin H, Bi H, Zhuang Y, Liu T, Ma Y. 2016. De novo biosynthesis of gastrodin in Escherichia coli. Metab. Eng. 35: 138-147. https://doi.org/10.1016/j.ymben.2016.01.002
  4. Kim HJ, Hwang IK, Won MH. 2007. Vanillin, 4-hydroxybenzyl aldehyde and 4-hydroxybenzyl alcohol prevent hippocampal CA1 cell death following global ischemia. Brain Res. 1181: 130-141. https://doi.org/10.1016/j.brainres.2007.08.066
  5. Yu SS, Zhao J, Lei SP, Lin XM, Wang LL, Zhao Y. 2011. 4-Hydroxybenzyl alcohol ameliorates cerebral injury in rats by antioxidant action. Neurochem. Res. 36: 339-346. https://doi.org/10.1007/s11064-010-0335-8
  6. Park S, Kim DS, Kang S. 2010. Gastrodia elata Blume water extracts improve insulin resistance by decreasing body fat in diet-induced obese rats: vanillin and 4-hydroxybenzaldehyde are the bioactive candidates. Eur. J. Nutr. 50: 107-118. https://doi.org/10.1007/s00394-010-0120-0
  7. Kang CW, Han YE, Kim J, Oh YH, Lee EJ. 2017. 4-Hydroxybenzaldehyde accelerates acute wound healing through activation of focal adhesion signalling in keratinocytes. Sci. Rep. 7: 14192. https://doi.org/10.1038/s41598-017-14368-y
  8. Song C, Fang S, Lv G, Mei X. 2013. Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord. Neural Regen. Res. 8: 1383-1389.
  9. Podstolski A, Havkin-Frenkel D, Malinowski J, Blount JW, Kourteva G, Dixon RA. 2002. Unusual 4-hydroxybenzaldehyde synthase activity from tissue cultures of the vanilla orchid Vanilla planifolia. Photochemistry 61: 611-620. https://doi.org/10.1016/S0031-9422(02)00285-6
  10. Lee JH, Wendisch VF. 2017a. Production of amino acids - Genetic and metabolic engineering approaches. Bioresour. Technol. 245: 1575-1587. https://doi.org/10.1016/j.biortech.2017.05.065
  11. Kim JY, Kim BY, Moon KH, Lee JH. 2019. Metabolic engineering of Corynebacterium glutamicum for N-acetylglucosamine production. Microbiol. Biotechnol. Lett. 47: 78-86. https://doi.org/10.4014/mbl.18012.12015
  12. Lee JH, Wendisch VF. 2017b. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J. Biotechnol. 257: 211-221. https://doi.org/10.1016/j.jbiotec.2016.11.016
  13. Wendisch VF, Lee JH. 2020. Metabolic Engineering in Corynebacterium glutamicum, pp. 287-322. In Inui M, Toyoda K (eds.), Corynebacterium glutamicum. Microbiology Monographs, Vol 23, Springer, Cham.
  14. Purwanto HS, Kang MS, Ferrer L, Han SS, Lee JY, Kim HS, et al. 2018. Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production. J. Biotechnol. 282: 92-100. https://doi.org/10.1016/j.jbiotec.2018.07.016
  15. Lee JH. 2014. Development and characterization of expression vectors for Corynebacterium glutamicum. J. Microbiol. Biotechnol. 24: 70-79. https://doi.org/10.4014/jmb.1310.10032
  16. Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Pühler A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69-73. https://doi.org/10.1016/0378-1119(94)90324-7
  17. Eggeling L, Bott M. 2005. Handbook of Corynebacterium glutamicum, pp. 540-544. 1st Ed. CRC Press, Boca Raton, Florida.
  18. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6: 343-345. https://doi.org/10.1038/nmeth.1318
  19. Li T, Chen X, Chaudhry MT, Zhang B, Jiang CY, Liu SJ. 2014. Genetic characterization of 4-cresol catabolism in Corynebacterium glutamicum. J. Biotechnol. 192: 355-365. https://doi.org/10.1016/j.jbiotec.2014.01.017
  20. Kim YM, Kwak MH, Kim HS, Lee JH. 2019. Production of indole-3-acetate in Corynebacterium glutamicum by heterologous expression of the indole-3-pyruvate pathway genes. Microbiol. Biotechnol. Lett. 47: 242-249. https://doi.org/10.4014/mbl.1901.01013
  21. He A, Li T, Daniels L, Fotheringham I, Rosazza JP. 2004. Nocardia sp. carboxylic acid reductase: cloning, expression, and characterization of a new aldehyde oxidoreductase family. Appl. Environ. Microbiol. 70: 1874-1881. https://doi.org/10.1128/AEM.70.3.1874-1881.2004
  22. Gahloth D, Aleku GA, Leys D. 2020. Carboxylic acid reductase: Structure and mechanism. J. Biotechnol. 307: 107-113. https://doi.org/10.1016/j.jbiotec.2019.10.010
  23. Han SS, Kyeong HH, Choi JM, Sohn YK, Lee JH, Kim HS. 2016. Engineering of the conformational dynamics of an enzyme for relieving the product inhibition. ACS Catal. 6: 8440-8445. https://doi.org/10.1021/acscatal.6b02793
  24. Rodriguez GM, Atsumi S. 2014. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab Eng. 25: 227-237. https://doi.org/10.1016/j.ymben.2014.07.012

Cited by

  1. Coenzyme Q10 Biosynthesis Established in the Non-Ubiquinone Containing Corynebacterium glutamicum by Metabolic Engineering vol.9, 2020, https://doi.org/10.3389/fbioe.2021.650961