DOI QR코드

DOI QR Code

Characterization of Cellular Growth, CO2 Assimilation and Neutral Lipid Production for 4 Different Algal Species

미세조류 4종의 성장, CO2 동화 및 지질 생성 특성

  • Shin, Chae Yoon (Department of Microbiology, Pusan National University) ;
  • Noh, Young Jin (Department of Microbiology, Pusan National University) ;
  • Jeong, So-Yeon (Department of Microbiology, Pusan National University) ;
  • Kim, Tae Gwan (Department of Microbiology, Pusan National University)
  • 신채윤 (부산대학교 미생물학과) ;
  • 노영진 (부산대학교 미생물학과) ;
  • 정소연 (부산대학교 미생물학과) ;
  • 김태관 (부산대학교 미생물학과)
  • Received : 2020.09.02
  • Accepted : 2020.10.15
  • Published : 2020.12.28

Abstract

Microalgae are a promising resource in energy and food production as they are cost-effective for biomass production and accumulate valuable biological resources. In this study, CO2 assimilation, biomass, and lipid production of 4 microalgal species (Chlorella vulgaris, Mychonastes homosphaera, Coelastrella sp., and Coelastrella vacuolata) were characterized at different CO2 concentrations ranging from 1% to 9%. Microscopic observation indicated that C. vulgaris was the smallest, followed by M. homosphaera, C. vacuolata, and Coelastrella sp. in order of size. C. vulgaris grew and consumed CO2 more rapidly than any other species. C. vulgaris exhibited a linear increase in CO2 assimilation (up to 9.62 mmol·day-1·l-1) as initial biomass increased, while the others did not (up to about 3 mmol·day-1·l-1). C. vulgaris, Coelastrella sp., and C. vacuolata showed a linear increase in the specific CO2 assimilation rate with CO2 concentration, whereas M. homosphaera did not. Moreover, C. vulgaris had a greater CO2 assimilation rate compared to those of the other species (14.6 vs. ≤ 11.9 mmol·day-1·l-1). Nile-red lipid analysis showed that lipid production per volume increased linearly with CO2 concentration in all species. However, C. vulgaris increased lipid production to 18 mg·l-1, compared to the 12 mg·l-1 produced by the other species. Thus, C. vulgaris exhibited higher biomass and lipid production rates with greater CO2 assimilation capacity than any other species.

미세조류는 효율적으로 바이오매스를 증가시킬 수 있으며 유용한 생물학적 자원들을 축적할 수 있기 때문에 에너지 및 식품 생산 등 다양한 분야에서 유망한 자원으로써 주목받고 있다. 본 연구에서는 4종의 미세조류(Chlorella vulgaris, Mychonastes homosphaera, Coelastrella sp., Coelastrella vacuolata)를 선정하여 이들의 성장, CO2 동화, CO2 농도에 따른 미세조류의 지질 생성 특성을 분석하였다. 각 미세조류의 크기는 C. vulgaris가 가장 작았으며, M. homosphaera, C. vacuolata, Coelastrella sp. 순으로 큰 크기를 나타냈다. C. vulgaris는 다른 3종의 미세조류와 비교해서 크기가 가장 작으며 성장과 CO2 동화 속도가 가장 빠르게 나타났다. 또한, 초기 바이오매스가 증가함에 따라 CO2 동화 속도는 최대 9.62 mmol·day-1·l-1를 나타냈으며, 다른 3종의 미세조류(약 3 mmol·day-1·l-1)보다 3배 이상 높은 CO2 동화 속도를 보여주었다(p < 0.05). M. homosphaera를 제외하고 3종의 미세조류는 CO2 농도와 CO2 동화 비속도 사이에 양의 상관관계(positive correlation)를 나타냈다. 특히, C. vulgaris는 다른 3종의 미세조류와 비교해 더 높은 CO2 동화 비속도를 보여주었다(14.6 vs. ≤ 11.9 mmol·day-1·l-1). 4종의 미세조류는 CO2 농도가 증가함에 따라 지질 함량이 증가했으며 그 중에서 C. vulgaris는 최대 18 mg·l-1를 나타내 다른 3종의 미세조류(최대 12 mg·l-1)보다 최소 50% 이상 높은 지질 함량을 보여주었다. 4종의 미세조류 중 C. vulgaris가 효율적으로 CO2를 동화하며 다른 미세조류보다 높은 바이오매스와 지질 생산이 가능함을 시사한다.

Keywords

References

  1. Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sust. Energ. Rev. 14: 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  2. Williams PJlB, Laurens LM. 2010. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energ. Environ. Sci. 3: 554-590. https://doi.org/10.1039/b924978h
  3. Shetty P, Gitau MM, Maroti G. 2019. Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells 8: 1-16. https://doi.org/10.3390/cells8010001
  4. Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S. 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour. Technol. 102: 71-81. https://doi.org/10.1016/j.biortech.2010.06.159
  5. Kumar SJ, Kumar GV, Dash A, Scholz P, Banerjee R. 2017. Sustainable green solvents and techniques for lipid extraction from microalgae: A review. Algal. Res. 21: 138-147. https://doi.org/10.1016/j.algal.2016.11.014
  6. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, et al. 2010. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 28: 371-380. https://doi.org/10.1016/j.tibtech.2010.04.004
  7. Zeng X, Danquah MK, Chen XD, Lu Y. 2011. Microalgae bioengineering: from CO2 fixation to biofuel production. Renew. Sust. Energ. Rev. 15: 3252-3260. https://doi.org/10.1016/j.rser.2011.04.014
  8. Li K, Liu Q, Fang F, Luo R, Lu Q, Zhou W, et al. 2019. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresour. Technol. 291: 121934. https://doi.org/10.1016/j.biortech.2019.121934
  9. Leong YK, Chang J-S. 2020. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 303: 122886. https://doi.org/10.1016/j.biortech.2020.122886
  10. Al-Qasmi M, Raut N, Talebi S, Al-Rajhi S, Al-Barwani T. 2012. Presented at the Proceedings of the world congress on engineering.
  11. Dimitrova P, Marinova G, Alexandrov S, Iliev I, Pilarski P. 2017. Presented at the Youth Scientific Conference, Sofia 2016.
  12. Lakshmikandan M, Murugesan A, Wang S, Abomohra AE-F, Jovita PA, Kiruthiga S. 2020. Sustainable biomass production under CO2 conditions and effective wet microalgae lipid extraction for biodiesel production. J. Clean. Prod. 247: 119398. https://doi.org/10.1016/j.jclepro.2019.119398
  13. Griffiths MJ, Harrison ST. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21: 493-507. https://doi.org/10.1007/s10811-008-9392-7
  14. Anjos M, Fernandes BD, Vicente AA, Teixeira JA, Dragone G. 2013. Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour. Technol. 139: 149-154. https://doi.org/10.1016/j.biortech.2013.04.032
  15. Lv J-M, Cheng L-H, Xu X-H, Zhang L, Chen H-L. 2010. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour. Technol. 101: 6797-6804. https://doi.org/10.1016/j.biortech.2010.03.120
  16. Safi C, Zebib B, Merah O, Pontalier P-Y, Vaca-Garcia C. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sust. Energ. Rev. 35: 265-278. https://doi.org/10.1016/j.rser.2014.04.007
  17. Sun L-Y, Cui W-J, Chen K-M. 2018. Two Mychonastes isolated from freshwater bodies are novel potential feedstocks for biodiesel production. Energ. Source Part A. 40: 1452-1460. https://doi.org/10.1080/15567036.2018.1477869
  18. Saadaoui I, Cherif M, Rasheed R, Bounnit T, Al Jabri H, Sayadi S, et al. 2020. Mychonastes homosphaera (Chlorophyceae): A promising feedstock for high quality feed production in the arid environment. Algal. Res. 51: 102021. https://doi.org/10.1016/j.algal.2020.102021
  19. Hu C-W, Chuang L-T, Yu P-C, Chen C-NN. 2013. Pigment production by a new thermotolerant microalga Coelastrella sp. F50. Food Chem. 138: 2071-2078. https://doi.org/10.1016/j.foodchem.2012.11.133
  20. Minhas AK, Hodgson P, Barrow CJ, Adholeya A. 2020. Two-phase method of cultivating Coelastrella species for increased production of lipids and carotenoids. Bioresour. Technol. Rep. 9: 100366. https://doi.org/10.1016/j.biteb.2019.100366
  21. Mayo AW, Noike T. 1994. Effect of glucose loading on the growth behavior of Chlorella vulgaris and heterotrophic bacteria in mixed culture. Water Res. 28: 1001-1008. https://doi.org/10.1016/0043-1354(94)90184-8
  22. Chen W, Zhang C, Song L, Sommerfeld M, Hu Q. 2009. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Meth. 77: 41-47. https://doi.org/10.1016/j.mimet.2009.01.001
  23. Hanagata N, Malinsky‐Rushansky N, Dubinsky Z. 1999. Eukaryotic picoplankton, Mychonastes homosphaera (Chlorophyceae, Chlorophyta), in Lake Kinneret, Israel. Phycol Res. 47: 263-269. https://doi.org/10.1046/j.1440-1835.1999.00176.x
  24. Yamamoto M, Fujishita M, Hirata A, Kawano S. 2004. Regeneration and maturation of daughter cell walls in the autosporeforming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae). J. Plant Res. 117: 257-264. https://doi.org/10.1007/s10265-004-0154-6
  25. Goecke F, Noda J, Paliocha M, Gislerod HR. 2020. Revision of Coelastrella (Scenedesmaceae, Chlorophyta) and first register of this green coccoid microalga for continental Norway. World J. Microbiol. Biotechnol. 36: 149. https://doi.org/10.1007/s11274-020-02897-0
  26. Khoshmanesh A, Lawson F, Prince IG. 1997. Cell surface area as a major parameter in the uptake of cadmium by unicellular green microalgae. Chem. Eng. 65: 13-19. https://doi.org/10.1016/S1385-8947(96)03091-4
  27. Sunda WG, Huntsman SA. 1997. Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390: 389-392. https://doi.org/10.1038/37093
  28. Chen F. 1996. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 14: 421-426. https://doi.org/10.1016/0167-7799(96)10060-3
  29. Li T, Zheng Y, Yu L, Chen S. 2014. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenerg. 66: 204-213. https://doi.org/10.1016/j.biombioe.2014.04.010
  30. Singh S, Singh P. 2014. Effect of CO2 concentration on algal growth: a review. Renew. Sust. Energ. Rev. 38: 172-179. https://doi.org/10.1016/j.rser.2014.05.043
  31. Abou-Shanab RA, Hwang J-H, Cho Y, Min B, Jeon B-H. 2011. Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Appl. Energ. 88: 3300-3306. https://doi.org/10.1016/j.apenergy.2011.01.060
  32. Ahmad A, Yasin NM, Derek C, Lim J. 2011. Microalgae as a sustainable energy source for biodiesel production: a review. Renew. Sust. Energ. Rev. 15: 584-593. https://doi.org/10.1016/j.rser.2010.09.018
  33. Karpagam R, Raj KJ, Ashokkumar B, Varalakshmi P. 2015. Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: lipid enhancement methods and media optimization using response surface methodology. Bioresour. Technol. 188: 177-184. https://doi.org/10.1016/j.biortech.2015.01.053
  34. Sung K-D, Lee J-S, Shin C-S, Park S-C, Choi M-J. 1999. CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresour. Technol. 68: 269-273. https://doi.org/10.1016/S0960-8524(98)00152-7
  35. Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I. 1992. Tolerance of microalgae to high CO2 and high temperature. Phytochemistry. 31: 3345-3348. https://doi.org/10.1016/0031-9422(92)83682-O